Publication: Diseño de sensores basados en puntos de carbono dopados y no dopados con iones lantánidos para la detección de glucosa y pH en rangos de interés clínico
Authors
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
Collections
References
Jarvis, P.R.E, Cardin, J.L., Nisevich-Bede, P.M., & McCarter, J.P. (2023). Continuous glucose monitoring in a healthy population: understanding the post-prandial glycemic response individuals without diabetes https://doi.org/10.1016/j.metabol.2023.155640.
E. Hopkins, T. Sanvictores, y S. Sharma, “Physiology, acid base balance”, en StatPearls, Treasure Island (FL): StatPearls Publishing, 2025.
Jyoti Jaiswal, Kazuma Sasaki, Kenta Shinha, Ganesh Kumar Mani, Hiroshi Kimura, Kazuyoshi Tsuchiya, Fabrication of microfluidic pH sensing chip based on sputtered Sb2O3/Sb thin film working electrode and AgIO3/Ag thin film reference electrode for detection of A549 cells, Measurement, Volume 233, 2024, 114781. https://doi.org/10.1016/j.measurement.2024.114781.
Thornton Group, “Mechanism and catalytic site atlas”, Ebi.ac.uk. Disponible en: https://www.ebi.ac.uk/thornton-srv/m-csa/entry/567/.
D. Stang, “Análisis de glucosa en la orina: Objetivo, procedimiento y resultados”, Healthline, 04-jun-2021. [En línea]. https://www.healthline.com/health/es/prueba-de-glucosa-en-orina. 13-may-2025].
S. P. Humphrey y R. T. Williamson, “A review of saliva: normal composition, flow, and function”, J. Prosthet. Dent., vol. 85, núm. 2, pp. 162–169, 2001.
“Fluid and electrolyte loss and replacement in exercise”, en Foods, Nutrition and Sports Performance, Routledge, 2013, pp. 163–194.
P. Yang, Z.Q. Zhu, T. Zhang, M.Z. Chen, Y.Z. Cao, W. Zhang, X. Wang, X.Y. Zhou, W.M. Chen, Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anticounterfeit printing, Carbon, 146 (2019), pp. 636–649.
Tian-Tian Wang, Xiao-Feng Huang, Hui Huang, Pei Luo, LinSen Qing, Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review, Advanced Sensor and Energy Materials, Volume 1, Issue 3, 2022, 100016. https://doi.org/10.1016/j.asems.2022.100016.
H. Qi et al., “Novel N-doped carbon dots derived from citric acid and urea: fluorescent sensing for determination of metronidazole and cytotoxicity studies”, RSC Adv., vol. 13, núm. 4, pp. 2663–2671, 2023.
M. Madhu, T.-H. Chen, y W.-L. Tseng, “White-light emission of single carbon dots prepared by hydrothermal carbonization of poly(diallyldimethylammonium chloride): Applications to fabrication of white-light-emitting films”, J. Colloid Interface Sci., vol. 556, pp. 120–127, 2019.
S. Aydin, A. Yilmaz, y M. Yilmaz, “Green synthesis of various heteroatom‐doped carbon quantum dots from urine, whey, and their mixture: The optimization of synthesis and potential applications”, ChemistrySelect, vol. 9, núm. 17, 2024.
W. Ge, S. Cao, H. Yu, y X. Wang, “Tough polyacrylic acid hydrogels with stable swelling and active functionalities enabled by quaternized cellulose nanofibrils and iron ions for absorbent pad interlayers”, Carbohydr. Polym., vol. 345, núm. 122491, p. 122491, 2024.
N. Gogoi, M. Barooah, G. Majumdar, y D. Chowdhury, “Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions”, ACS Appl. Mater. Interfaces, vol. 7, núm. 5, pp. 3058–3067, 2015.
Z. Zhang, Z. Huang, D. Qin, D. Liu, X. Guo, y H. Lin, “Fluorescent starch-based hydrogel with cellulose nanofibrils and carbon dots for simultaneous adsorption and detection of Pb(II)”, Carbohydr. Polym., vol. 323, núm. 121427, p. 121427, 2024.
Z. Wei et al., “Effects of local matrix environment on the spectroscopic properties of ensemble to single-particle level carbon dots”, Chin. Chem. Lett., vol. 33, núm. 2, pp. 751–756, 2022.