Publication: Detección de transacciones fraudulentas en una plataforma de comercio electrónico
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
Collections
References
21+ Chargeback Statistics You Need To Know in 2024 (2025). en. URL: https:// www.chargeback.io/blog/chargeback-statistics(visitado18-02-2025).
Badii, M. H., J. Castillo yA. Guillen (ene. de 2008). “Tamaño óptimo de la muestra”. es. En: Innovaciones de Negocios 5.9. Number: 9, págs. 53-65. ISSN: 3061-743X. DOI: 10.29105/rinn5.9-5. URL: https://revistainnovaciones.uanl. mx/index.php/revin/article/view/199 (visitado 22-04-2025).
Creswell, John W. y J. David Creswell (2023). Research Design. Qualitative, Quantitative, and Mixed Methods Approaches. en. Accepted: 2024-05-22T20:10:53Z. ISBN: 978-1-07-181796-4. URL: http://repositorio.ciem.ucr.ac.cr/ jspui/handle/123456789/514 (visitado 10-02-2025).
Dekou, Raoul et al. (2021). “Machine Learning Methods for Detecting Fraud in Online Marketplaces.” En: CIKM Workshops. URL: https://ceur-ws.org/ Vol-3052/paper15.pdf (visitado 18-02-2024).
E-commerce fraud detection prevention market 2021-2027 (2024). en. URL: https: //www.statista.com/statistics/1273278/market-size-e-commercefraud-detection-prevention-market/ (visitado 28-02-2024).
eCommerce Statistics of 2024– Forbes Advisor (2024). URL: https://www. forbes.com/advisor/business/ecommerce-statistics/ (visitado 27-02-2024).
Gupta, Surbhi, N Malsa y Mr Vimal Gupta (2017). “Credit card fraud detection and prevention—a survey”. En: International Journal for Innovative Research in Science & Technology 4, págs. 1-7.
Hou, Chun Kit Jeffery y Kamran Behdinan (dic. de 2022). “Dimensionality Reduction in Surrogate Modeling: A Review of Combined Methods”. en. En: Data Science and Engineering 7.4, págs. 402-427. ISSN: 2364-1541. DOI: 10.1007/ s41019-022-00193-5. URL: https://doi.org/10.1007/s41019-02200193-5 (visitado 21-12-2024).
Levine, E. S. (2012). “Improving risk matrices: the advantages of logarithmically scaled axes”. en. En: Journal of Risk Research 15.2. Publisher: Taylor & Francis Journals, págs. 209-222. URL: https://ideas.repec.org//a/taf/ jriskr/v15y2012i2p209-222.html (visitado 27-02-2025).
M, Hossin y Sulaiman M.N (mar. de 2015). “AReview on Evaluation Metrics for Data Classification Evaluations”. en. En: International Journal of Data Mining &KnowledgeManagementProcess5.2,págs.01-11. ISSN: 2231007X, 22309608. DOI: 10.5121/ijdkp.2015.5201. URL: http://www.aircconline.com/ ijdkp/V5N2/5215ijdkp01.pdf (visitado 22-01-2025).
Mohsen, Omar Rajab, Ghalia Nassreddine y Mazen Massoud (4 de jul. de 2023). “Credit Card Fraud Detector Based on Machine Learning Techniques”. En: Journal of Computer Science and Technology Studies 5.2. Number: 2, págs. 16-30. ISSN: 2709-104X. DOI: 10.32996/jcsts.2023.5.2.2. URL: https:// www.al-kindipublisher.com/index.php/jcsts/article/view/5515 (visitado 18-02-2024).
Ogunleye, Adeola y Qing-Guo Wang (nov. de 2020). “XGBoost Model for Chronic Kidney Disease Diagnosis”. En: IEEE/ACM Transactions on Computational Biology and Bioinformatics 17.6. Conference Name: IEEE/ACM Transactions on Computational Biology and Bioinformatics, págs. 2131-2140. ISSN: 15579964. DOI: 10.1109/TCBB.2019.2911071. URL: https://ieeexplore. ieee.org/abstract/document/8693581 (visitado 22-01-2025).
Saputra, Adi y Suharjito (2019). “Fraud Detection using Machine Learning in e-Commerce”. En: Publisher: Science and Information (SAI) Organization Limited. ISSN: 2158107X. DOI: 10.14569/IJACSA.2019.0100943. URL: https://www.proquest.com/docview/2655164322?pq-origsite= gscholar&fromopenview=true&sourcetype=Scholarly%20Journals (visitado 18-02-2024).
Visa Secure, EMV 3-D Secure para comercios (2024). es. URL: https://www. visa.com.co/run-your-business/small-business-tools/paymenttechnology/visa-secure.html (visitado 30-03-2024).
Xuan, Shiyang et al. (mar. de 2018). “Random forest for credit card fraud detection”. En: 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), págs. 1-6. DOI: 10.1109/ICNSC.2018.8361343. URL: https://ieeexplore.ieee.org/abstract/document/8361343 (visitado 15-01-2025).
Zhang, Ge et al. (7 de mar. de 2022). “eFraudCom:An E-commerce Fraud Detection System via Competitive Graph Neural Networks”. En: ACM Transactions on Information Systems 40.3, 47:1-47:29. ISSN: 1046-8188. DOI: 10.1145/3474379. URL: https://doi.org/10.1145/3474379 (visitado 18-02-2024).