Publication: Predicción de componentes protésicos en artroplastia de cadera empleando aprendizaje multimodal
Authors
Authors
Abstract (Spanish)
Abstract (English)
Extent
Al consultar y hacer uso de este recurso, usted acepta las condiciones de uso establecidas por el autor. Queda prohibida su reproducción total o parcial sin autorización previa, salvo para fines académicos con la debida citación.
Collections
Collections
References
Pagès, E., Iborra, J., & Cuxart, A. (2007). Artroplastia de cadera. Rehabilitación, 41(6), 280–289. https://doi.org/10.1016/s0048-7120(07)75531-7
Manual de enfermedades óseas. (2010). Editorial Médica Panamericana.
Hidalgo García, C., Herrero Gallego, P., Estébanez de Miguel, E., Caudevilla Polo, S., Fernández Gentsch, G., & Giner Nicolás, R. (2008). Autoestiramiento en la cadera: influencia de los factores biomecánicos sobre la salud del deportista. Fisioterapia, 30(2), 8795. https://doi.org/10.1016/s0211-5638(08)72962-6
Gray, H., Gray's Anatomy: The Anatomical Basis of Clinical Practice, 41st ed., Churchill Livingstone, 2015, pp. 1350-1360.
.C. Pabinger, H. Lothaller, N. Portner, and A. Geissler, "Projections of hip arthroplasty in OECD countries up to 2050," HIP International, vol. 28, no. 5, pp. 498-506, 2018.
F. Han et al., "Artificial Intelligence in Orthopedic Surgery: Current Applications, Challenges, and Future Directions," MedComm, vol. 6, no. 7, p. e70260, Jun. 2025. doi: 10.1002/mco2.70260. Disponible: https://doi.org/10.1002/mco2.70260
A. Bozzo et al., "Deep Learning and Multimodal Artificial Intelligence in Orthopaedic Surgery," J. Am. Acad. Orthop. Surg., vol. 32, no. 11, pp. e523–e532, Apr. 2024. doi: 10.5435/jaaos-d-23-00831. Disponible: https://doi.org/10.5435/jaaos-d-23-00831
A. Alzaid et al., "Simultaneous Hip Implant Segmentation and Gruen Landmarks Detection," IEEE J. Biomed. Health Inform., 2023. doi: 10.1109/JBHI.2023.3323533. Disponible: https://doi.org/10.1109/JBHI.2023.3323533
J. Zhu et al., "Efficacy of an artificial intelligence preoperative planning system for assisting in revision surgery after artificial total hip arthroplasty," BMC Surg., vol. 25, art. 58, 2025. doi: 10.1186/s12893-025-02129-6. Disponible: https://doi.org/10.1186/s12893025-02129-6
Ranco-Ferrando, A. Malik, A. González-Della Valle y E. A. Salvati, “La planificación preoperatoria del reemplazo protésico en las fracturas de cadera del anciano”, Rev. Espanola Cirugia Ortop. Traumatol., vol. 54, n.º 2, pp. 136–145, marzo de 2010. [Online]. Available: https://doi.org/10.1016/j.recot.2009.08.007
D. Chopra y R. Khurana, Introduction to Machine Learning with Python. Singapore: Bentham Science Publishers, 2023, ISBN: 978-981-5124-43-9
Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2024). Medical Image Segmentation Review: The Success of U-Net. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–20. https://doi.org/10.1109/tpami.2024.3435571
.J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788. Available: http://pjreddie.com/yolo/
Bozzo, A., Tsui, J. M. G., Bhatnagar, S., & Forsberg, J. (2024). Deep Learning and Multimodal Artificial Intelligence in Orthopaedic Surgery. Journal of the American Academy of Orthopaedic Surgeons. https://doi.org/10.5435/jaaos-d-23-00831
A. Mikołajczyk and M. Grochowski, "Data Augmentation for Improving Deep Learning in Image Classification Problem," Department of Control Systems Engineering, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk, Poland.
Chen, J. B., Diane, A., Lyman, S., Chiu, Y.-f., Blevins, J. L., & Westrich, G. H. (2022). Predicting Size in Total Hip Arthroplasty. Arthroplasty Today. https://doi.org/10.1016/j.artd.2022.02.018
Sershon, R. A., Courtney, P. M., Rosenthal, B. D., Sporer, S. M., & Levine, B. R. (2017). Can Demographic Variables Accurately Predict Component Sizing in Primary Total Knee Arthroplasty? The Journal of https://doi.org/10.1016/j.arth.2017.05.007
Rajan, S., Jain, S., & Dhosariya, C. S. (2023). Demographic-Based Algorithm Used to Predict the Implant Sizing in Total Knee Arthroplasty. Journal of Orthopedics, Traumatology and Rehabilitation, 15(2), 177–180. https://doi.org/10.4103/jotr.jotr_60_22
Boubekri, A., Murphy, M., Scheidt, M., Shivdasani, K., Anderson, J., Garbis, N., & Salazar, D. (2024). Artificial Intelligence Machine Learning Algorithms Versus Standard Linear Demographic Analysis in Predicting Implant Size of Anatomic and Reverse Total Shoulder Arthroplasty. JAAOS: Global https://doi.org/10.5435/jaaosglobal-d-24-00182
D. Wu, X. Zhi, X. Liu, Y. Zhang y W. Chai, “Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty”, J. Orthopaedic Surgery Res., vol. 17, n.º 1, marzo de 2022. Accedido el 2 de febrero de 2025. [En línea]. Disponible: https://doi.org/10.1186/s13018-022-02932-w
.Chan PY, Baker CE, Suh Y, Moyer D, Martin JR, Development of a Deep Learning Model for Automating Implant Position in Total Hip Arthroplasty, The Journal of Arthroplasty(2025), doi: https://doi.org/10.1016/j.arth.2025.01.032.
.Park, J., Kim, S. E., Kim, B., Lee, S., Lee, J.-J., & Ro, D. H. (2024). A deep learning based automatic two-dimensional digital templating model for total knee arthroplasty. Knee Surgery & Related Research, 36(1). https://doi.org/10.1186/s43019-024-00240-7
Yu, Y., Cho, Y. J., Park, S., Kim, Y. H., & Goh, T. S. (2024). Development of an artificial intelligence model for predicting implant size in total knee arthroplasty using simple X-ray Journal of Orthopaedic https://doi.org/10.1186/s13018-024-05013-2
Y. Yue, X. Wang, M. Zhao, H. Tian, Z. Cao, and Q. Gao, "Preoperative prediction of prosthetic size in total knee arthroplasty based on multimodal data and deep learning," 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 2019, pp. 9064325. doi: 10.1109/ICCC47050.2019.9064325
Hu S, Xu C, Guan W, Tang Y, Liu Y. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis. Biomed Mater Eng. 2014;24(1):129-43. doi: 10.3233/BME-130793. PMID: 24211892
Krug R, Carballido-Gamio J, Burghardt AJ, Haase S, Sedat JW, Moss WC, Majumdar S. Wavelet-based characterization of vertebral trabecular bone structure from magnetic resonance images at 3 T compared with micro-computed tomographic measurements. Magn Reson Imaging. 2007 Apr;25(3):392-8. doi: 10.1016/j.mri.2006.09.020. Epub 2006 Nov 14. PMID: 17371730.