Publication: Evaluación del desempeño mecánico de mezclas asfálticas en caliente que incluyan agregados provenientes de escoria de alto horno y valorización de este subproducto como material de construcción
Authors
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
Collections
References
Acerías Paz del Río. (2025). Paz del río. https://www.pazdelrio.com.co/producto/escorialitificada-y-sustituta/
ANDI, & Comité colombiano de productores de acero. (2019, April 2). Informe del sector siderúrgico 2019-2020. https://www.andi.com.co/Uploads/ISS%202019%202020%20(2)_637707766668934393.pdf
Asociación Española de Normalización. (2019a). Ensayo de compresión cíclico: Vol. UNEEN 12697-25 (UNE, Ed.).
Asphalt Insitute. (2014). Asphalt mix design methods (7th ed.).
Benavides, D., López-Montero, T., Aponte, D., & Barra Bizinotto, M. (2023). USES OF FINE STEEL SLAG TO MITIGATE THE EFFECTS OF MOISTURE DAMAGE IN ASPHALT MIXTURES. Conference: XXVIIth World Road Congres. https://www.researchgate.net/publication/375692281_USES_OF_FINE_STEEL_SLA G_TO_MITIGATE_THE_EFFECTS_OF_MOISTURE_DAMAGE_IN_ASPHALT_MIXT URES
Chegenizadeh, A., Hanson, S. W., Nikraz, H., & Kress, C. S. (2022). Effects of GroundGranulated Blast-Furnace Slag Used as Filler in Dense Graded Asphalt. Applied Sciences 2022, Vol. 12, Page 2769, 12(6), 2769. https://doi.org/10.3390/APP12062769
Chen, Z., Leng, Z., Jiao, Y., Xu, F., Lin, J., Wang, H., Cai, J., Zhu, L., Zhang, Y., Feng, N., Dong, Y., & Zhang, Y. (2022). Innovative use of industrially produced steel slag powders in asphalt mixture to replace mineral fillers. Journal of Cleaner Production, 344. https://doi.org/10.1016/J.JCLEPRO.2022.131124
Especificaciones Generales de Construcción de Carreteras, Pub. L. No. Artículo 410-22 (2022).
Eurofer. (2024). European Steel in Figures.
Euroslag. (2025b, April 17). Slag producing and processing in Euope in 2022. Statistics 2022. https://www.euroslag.com/products/statistics/statistics-2022/
Gan, Y., Li, C., Ke, W., Deng, Q., & Yu, T. (2022). Study on pavement performance of steel slag asphalt mixture based on surface treatment. Case Studies in Construction Materials, 16, e01131. https://doi.org/10.1016/J.CSCM.2022.E01131
Goli, A. (2022). The study of the feasibility of using recycled steel slag aggregate in hot mix asphalt. Case Studies in Construction Materials, 16, e00861. https://doi.org/10.1016/J.CSCM.2021.E00861
Hair jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (Pearson Prentice Hall, Ed.; 7th ed., pp. 501–528).
Imtiaz, T., Ahmed, A., Sahadat Hossain, M. D., & Faysal, M. (2020). Microstructure Analysis and Strength Characterization of Recycled Base and Sub-Base Materials Using Scanning Electron Microscope. Infrastructures 2020, Vol. 5, Page 70, 5(9), 70. https://doi.org/10.3390/INFRASTRUCTURES5090070
Jenkins, Ron. (1999). X-ray fluorescence spectrometry (W. J. D., Ed.; 2nd ed., Vol. 152). Wiley.
Jiang, Y., Deng, C., Li, Q., & Liu, H. (2019). Effect of Compaction Methods on Physical and Mechanical Properties of Asphalt Mixture. Journal of Materials in Civil Engineering, 31(6), 04019075. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002732
Kong, D., Chen, M., Xie, J., Zhao, M., & Yang, C. (2019). Geometric Characteristics of BOF Slag Coarse Aggregate and its Influence on Asphalt Concrete. Materials 2019, Vol. 12, Page 741, 12(5), 741. https://doi.org/10.3390/MA12050741
Loma Lozano, J., & Peña Ruiz, J. L. (n.d.). COMPARATIVE STUDY BETWEEN GYRATORY COMPACTOR AND IMPACT COMPACTOR (MARSHALL) TO PREPARE BITUMINOUS MIXTURE SPECIMENS.
Maharaj, C., White, D., Maharaj, R., & Morin, C. (2017). Re-use of steel slag as an aggregate to asphaltic road pavement surface. Http://Www.Editorialmanager.Com/Cogenteng, 4(1), 1416889. https://doi.org/10.1080/23311916.2017.1416889
Normas de Ensayo de Materiales Para Carreteras, Pub. L. No. INV E – 238 – 13 Determinación de la resistencia del agregado grueso a la degradación por abrasión, utilizando el aparato micro-deval (2013).
Normas de Ensayo de Materiales Para Carreteras, Pub. L. No. INV E-223-13 Densidad, densidad relativa (gravedad específica) y absorción del agregado grueso (2013).
Normas de Ensayo de Materiales Para Carreteras, Pub. L. No. INV E-218-13 Resistencia a la degradación de los agregados de tamaños menores de 37.5 mm (1½") por medio de la máquina de Los Ángeles (2013).
Normas de Ensayo de Materiales Para Carreteras, Pub. L. No. INV E – 748 – 13 Estabilidad y flujo de mezclas asfálticas en caliente empleando el equipo marshall (2013).
Normas de Ensayo de Materiales Para Carreteras, Pub. L. No. INV E – 725 – 13 Evaluación de la susceptibilidad al agua de las mezclas de concreto asfáltico utilizando la prueba de tracción indirecta. (2013).
Organización de Naciones Unidas. (2015, January 1). Cambio climático - Desarrollo Sostenible. Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/climate-change-2/
Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials, 25(8), 3458–3468. https://doi.org/10.1016/J.CONBUILDMAT.2011.03.037
Qazizadeh, M. J., Farhad, H., Kavussi, A., & Sadeghi, A. (2018). Evaluating the fatigue behavior of asphalt mixtures containing electric arc furnace and basic oxygen furnace slags using surface free energy estimation. Journal of Cleaner Production, 188, 355– 361. https://doi.org/10.1016/J.JCLEPRO.2018.04.035
Rondón-Quintana, H. A., Muniz-de Farias, M., & Reyes-Lizcano, F. A. (2018). Uso de escorias de alto horno y acero en mezclas asfálticas: revisión. Revista Ingenierías Universidad de Medellín, 17(33), 71–97. https://doi.org/10.22395/RIUM.V17N33A4
Roque, R., Buttlar, W. G., Ruth, B. E., Tia, M., Dickison, S. W., & Reid, B. (1997). EVALUATION OF SHRP INDIRECT TENSION TESTER TO MITIGATE CRACKING IN ASPHALT CONCRETE PAVEMENTS AND OVERLAYS. https://fdotwww.blob.core.windows.net/sitefinity/docs/defaultsource/research/reports/fdot-ba546-rpt.pdf
Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A., & Ortega-López, V. (2017). EAF slag in asphalt mixes: A brief review of its possible re-use. Resources, Conservation and Recycling, 120, 176–185. https://doi.org/10.1016/J.RESCONREC.2016.12.009
Slebi-Acevedo, C. J., Lastra-González, P., Indacoechea-Vega, I., & Castro-Fresno, D. (2020). Laboratory assessment of porous asphalt mixtures reinforced with synthetic fibers. Construction and Building Materials, 234, 117224. https://doi.org/10.1016/J.CONBUILDMAT.2019.117224
Swathi, M., Andiyappan, T., Guduru, G., Amarnatha Reddy, M., & Kuna, K. K. (2021). Design of asphalt mixes with steel slag aggregates using the Bailey method of gradation selection. Construction and Building Materials, 279, 122426. https://doi.org/10.1016/J.CONBUILDMAT.2021.122426
United States Geological Survey. (2023). COPPER. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-copper.pdf
Ye, Y., Wu, S., Li, C., Kong, D., & Shu, B. (2019). Morphological Discrepancy of Various Basic Oxygen Furnace Steel Slags and Road Performance of Corresponding Asphalt Mixtures. Materials 2019, Vol. 12, Page 2322, 12(14), 2322. https://doi.org/10.3390/MA12142322
Zaniewski, J. P. M., Hughes, H. O., & Virginia, W. (2003). Inter Laboratory Variability of the Marshall Test Method for Asphalt Concrete FINAL REPORT WVDOH RP #137.
Zhou, L., Airey, G., Zhang, Y., & Wang, C. (2024). Multiscale characterisation on the adhesion and selective adsorption at bitumen–mineral interface. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2024.2426012;WGROUP:STRING:PUBLICATION