Mostrar el registro sencillo del ítem

dc.contributor.authorMonroy, Cristian Camilo
dc.contributor.authorSiachoque, Cristian Alejandro
dc.contributor.authorDurán Tovar, Iván Camilo
dc.contributor.authorMarulanda Guerra, Agustín Rafael
dc.date.accessioned2021-05-04T13:55:41Z
dc.date.accessioned2021-10-01T17:24:39Z
dc.date.available2021-10-01T17:24:39Z
dc.date.issued2020
dc.identifier.issn2344-8393
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1385
dc.description.abstractContexto: El incremento constante en el uso de vehículos eléctricos a nivel mundial ha motivado investigaciones para mejorar la autonomía de los mismos frente vehículos de combustión tradicionales. Este artıculo presenta el estudio de un sistema de carga de batería para vehículos eléctricos basado en el movimiento constante del sistema de tracción. Método: Se realiza una evaluación sobre un sistema de regeneración de energía cinética constante para aumentar la autonomía de vehículos eléctricos. Esto se logra mediante la validación de un modelo matemático de consumo de energía de un vehículo eléctrico de batería con sistema de freno regenerativo, comparando mediante simulaciones los estados de consumo y carga entre los dos sistemas de recuperación de energía. Resultados: El vehículo con un sistema de regeneración por movimiento constante consumió 42,9 %m ́as de potencia que utilizando freno regenerativo, debido a que el nuevo sistema aumento la masa total en el vehículo. Dicho aumento de masa, hace que se deba consumir mayor potencia por parte del sistema de tracción para mover el vehículo. Conclusiones: El sistema convencional de freno regenerativo resulta m ́as favorable respecto al sistema de regeneración por energía cinética propuesto, excepto en tramos de velocidad constante y aceleración cero.spa
dc.description.abstractContext:The constant increase in the use of electric vehicles worldwide has motivated research to improve their autonomy compared to traditional combustion vehicles. This article presents the study of a battery charging system for electric vehicles based on the constant movement of the traction system. Method: An evaluation is carried out on a constant kinetic energy regeneration system to increase the autonomy of electric vehicles. This is achieved through the validation of a mathematical energy consumption model of a battery-based electric vehicle with a regenerative brake system, comparing the results of consumption and load states between the two energy recovery systems by means of simulations. Results: The vehicle with constant motion regeneration system consumed 42,9 % more power than the one using a regenerative brake because the new system increased the total mass in the vehicle. This increase in mass means that more power must be consumed by the traction system to move the vehicle. Conclusions: The conventional regenerative brake system is more favorable with respect to the proposed regeneration system for kinetic energy, except in constant speed and zero acceleration sections.spa
dc.format.extent18 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Distrital Francisco José de Caldasspa
dc.rightsThe authors; reproduction right holder Universidad Distrital Francisco José de Caldas.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.udistrital.edu.co/index.php/reving/article/view/16220/16101spa
dc.titleEstudio Comparativo de un Sistema de Freno Regenerativo y Regeneración con Energía Cinética Constante en Vehículos Eléctricos de Bateríaspa
dc.title.alternativeComparative Study of a Regenerative Braking System and Regeneration with Constant Kinetic Energy in Battery-based Electric Vehiclesspa
dc.typeArtículo de revistaspa
dc.description.notesEscuela Colombiana de Ingeniería Julio Garavito (Bogotá-Colombia),2Grupo de Modelación Estratégica en Energía y Potencia, Escuela Colombiana de Ingeniería Julio Garavito (Bogotá-Colombia) *Correspondence email: ivan.duran@escuelaing.edu.cospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Modelación Estratégica en Energía y Potenciaspa
dc.identifier.doi10.14483/23448393.16220
dc.identifier.urlhttps://doi.org/10.14483/23448393.16220
dc.publisher.placeBogotá, Colombia.spa
dc.relation.citationeditionIngeniería, Vol. 25, Num. 3, 2020.spa
dc.relation.citationendpage18spa
dc.relation.citationissue3spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume25spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalRevista Ingenieríaspa
dc.relation.referencesInternational Energy Agency. “Global EV Outlook 2019”. Technical report, International Energy Agency, 2019. https://www.iea.org/reports/global-ev-outlook-2019.spa
dc.relation.referencesF. Un-Noor, S. Padmanaban, L. Mihet-Popa, and M. N. Mollah y E. Hossain. “A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development”. Energies, vol. 10, 2017. https://doi.org/10.3390/en10081217spa
dc.relation.referencesE. Silvas¸, T. Hofman, and M. Steinbuch. “Review of Optimal Design Strategies for Hybrid Electric Vehicles”. IFAC Proceedings Volumes, vol. 45(30):57–64, 2012. https://doi.org/10.3182/20121023-3-FR-4025.00054spa
dc.relation.referencesP. G. Anselma, A. Biswas, G. Belingardi, and A. Emadi. “Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles”. Applied Energy, vol. 275:1–11, 2020. https://doi.org/10.1016/j.apenergy.2020.115319spa
dc.relation.referencesM. F. M. Sabri, K.A. Danapalasingam, and M.F. Rahmat. “A review on hybrid electric vehicles architecture and energy management strategies”. Renewable and Sustainable Energy Reviews, vol. 53(C):1433-1442, 2016. https://doi.org/10.1016/j.rser.2015.09.036spa
dc.relation.referencesA. M. Andwari, A. Pesiridis, R. Srithar, R. Martinez-Botas, and V. Esfahanian. “A review of Battery Electric Vehicle technology and readiness levels”. Renewable and Sustainable Energy Reviews, vol. 78(C):414–430, 2017. https://doi.org/10.1016/j.rser.2017.03.138spa
dc.relation.referencesA. Beltrán, J. Rumbo, H. Azcaray, K. Santiago, M. Calixto, and E. Sarmiento. “Simulación y control de la velocidad y par electromagnético de un motor de inducción trifásico: Un enfoque a vehículos eléctricos”. Revista Iberoamericana de Automática e Informática industrial, vol. 16(3):308–320, 2019. https://doi.org/10.4995/riai.2019.10452spa
dc.relation.referencesA. Cruz-Rojas, J. Rumbo-Morales, J. de la Cruz-Soto, J. Brizuela-Mendoza, F. Sorcia-Vázquez, and M. Martínez-García. “Simulation and Control of Reactants Supply and Regulation of Air Temperature in a PEM Fuel Cells System with Capacity of 50 kW”. Revista Mexicana De Ingeniería Química, vol. 18(1): 349–360, 2019. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Martinezspa
dc.relation.referencesA. F. Pacheco, M. E. S. Martins, and H. Zhao. “New European Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results”. Fuel, vol. 111:733–739, 2013. https://doi.org/10.1016/j.fuel.2013.03.060spa
dc.relation.referencesR. C. Redondo, M. Redondo, N. R. Melchor, F. R. Quintela, and J. M. García. “Carga de una batería y electricidad, dos términos de utilización confusa”. Técnica Industrial, N/A (257):34–39, 2005spa
dc.relation.referencesM. K. Yoong, Y. H. Gan, G. D. Gan, C. K. Leong, Z. Y. Phuan, B. K. Cheah, and K. W. Chew. “Studies of regenerative braking in electric vehicle. In 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology”, pages 40–45, 2010. https://doi.org/10.1109/STUDENT.2010.5686984spa
dc.relation.referencesW. Yu, R. Wang, and R. Zhou. “A Comparative Research on the Energy Recovery Potential of Different Vehicle Energy Regeneration Technologies”. Energy Procedia, vol. 158:2543–2548, 2019. https://doi.org/10.1016/j.egypro.2019.02.001spa
dc.relation.referencesN. L. Hinov, D. N. Penev, and G. I. Vacheva. “Ultra Capacitors Charging by Regenerative Braking in Electric Vehicles”. Proceedings 2016 XXV International Scientific Conference Electronics (ET), pages 1–4, 2016. https://doi.org/10.1109/ET.2016.7753484spa
dc.relation.referencesJ. Hamid, R. Sheeba , and S. Sofiya. “Energy Harvesting through Regenerative Braking using Hybrid Storage System in Electric Vehicles”. Proceedings 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pages 1–6, 2019. https://doi.org/10.1109/INCOS45849.2019.8951323spa
dc.relation.referencesA. P. Budijono, I. N. Sutantra , and A. S. Pramono. “Development of Flywheel Regenerative Capture System to Improve Electric Vehicle Energy Captured System”. Proceedings 2019 International Conference on Information and Communications Technology (ICOIACT), pages 845–850, 2019. https://doi.org/10.1109/ICOIACT46704.2019.8938552spa
dc.relation.referencesS. Heydari, P. Fajri, R. Sabzehgar, and A. Asrari. “Optimal Blending of Regenerative and Friction Braking at Low Speeds for Maximizing Energy Extraction in Electric Vehicles”. Proceedings 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pages 6815–6819, 2019. https://doi.org/10.1109/ECCE.2019.8913117spa
dc.relation.referencesC. Fiori, K. Ahn, and H. A. Rakha. “Power-based electric vehicle energy consumption model: Model development and validation”. Applied Energy, vol. 168:257 – 268, 2016. https://doi.org/10.1016/j.apenergy.2016.01.097spa
dc.relation.referencesOrganizacion Unece. “Worldwide harmonized Motorcycle Emissions Certification/Test procedure (WMTC) informalgroup”. Technical report, Organizacion Unece, 2011. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/wmtc.htmlspa
dc.relation.referencesU. N. E. Comission. “Draft global technical regulation”. Technical report, United Nations, 2003. https://www.unece.org/fileadmin/DAM/trans/doc/2003/wp29grpe/TRANS-WP29-GRPE-46-inf15e.pdfspa
dc.relation.referencesW. Saleh, R. Kumar, H. Kirby, and P. Kumar. “Real world driving cycle for motorcycles in Edinburgh”. Transportation Research Part D: Transport and Environment, vol. 14, no. 5, 326–333, 2009. https://doi.org/10.1016/j.trd.2009.03.003spa
dc.relation.referencesU. S. E. P. Agency. “Dynamometer drive schedules”. Technical report, EPA, 2017. https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedulesspa
dc.relation.referencesThe Car Connection. “Characteristics Nissan leaf the car connection 2015”. Technical report, The Car Connection, 2015. https://www.thecarconnection.com/specifications/nissan_leaf_2015_basespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.armarcPoder de frenado (Física nuclear)spa
dc.subject.armarcStopping power (Nuclear physics)eng
dc.subject.proposalEficienciaspa
dc.subject.proposalEnergía cinéticaspa
dc.subject.proposalEstado de cargaspa
dc.subject.proposalFrenado regenerativospa
dc.subject.proposalVehículo eléctricospa
dc.subject.proposalEfficiencyspa
dc.subject.proposalElectric vehiclespa
dc.subject.proposalKinetic energyspa
dc.subject.proposalRegenerative brakespa
dc.subject.proposalState of chargespa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

The authors; reproduction right holder Universidad Distrital Francisco José de Caldas.
Excepto si se señala otra cosa, la licencia del ítem se describe como The authors; reproduction right holder Universidad Distrital Francisco José de Caldas.