Mostrar el registro sencillo del ítem

dc.contributor.authorTello Maita, Josimar
dc.contributor.authorMarulanda Guerra, Agustín
dc.date.accessioned2021-05-06T15:09:37Z
dc.date.accessioned2021-10-01T17:24:41Z
dc.date.available2021-05-06T15:09:37Z
dc.date.available2021-10-01T17:24:41Z
dc.date.issued2017
dc.identifier.issn0012-7353
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1403
dc.description.abstractEl presente artículo describe los modelos de optimización recientemente aplicados al diseño y operación de los sistemas de potencia hacia la conformación de las redes inteligentes e identifica las tendencias, barreras y posibles brechas en esta área. Se describen modelos para optimizar el diseño y la operación de los sistemas de potencia considerando las energías renovables, la generación distribuida, las micro redes, la gestión de la demanda y los sistemas de almacenamiento de energía. Se concluyó que es necesario validar muchos de los modelos que se han formulado recientemente para la optimización de la operación mediante pruebas con datos reales y a gran escala. Además, la gestión de la demanda y las micro redes son aspectos en los cuales se requieren desarrollar modelos para el flujo óptimo de potencia. Finalmente, es necesario predecir con mayor precisión las variables estocásticas para que estos modelos se adapten al comportamiento real del sistema.spa
dc.description.abstractThe present paper aims to describe the optimization models recently applied to the design and operation of power systems in the road to the formation of smart grids and to identify the trends, challenges and possible gaps existing in this field of study. The models described allow performing optimization of the design and operation of power systems considering aspects as renewable energies and its related variability, distributed generation and micro grids, demand-site management and energy storage systems. Conclusions point out that several of the models recently formulated need to be validated with real data and large-scale systems tests. Moreover, demand-site management and micro grids are aspects that lack of the development of complete optimal power flow models. Finally, the accurate forecasting of stochastic variables is necessary to accomplish a better adaptation of models to real behavior of the power system.spa
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.rightsThe author; licensee Universidad Nacional de Colombia.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://revistas.unal.edu.co/index.php/dyna/article/view/63354/62427spa
dc.titleModelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisiónspa
dc.title.alternativeOptimization models for power systems in the evolution to smart grids: A reviewspa
dc.typeArtículo de revistaspa
dc.description.notesa Facultad de Ingeniería, Universidad del Zulia, Maracaibo, Venezuela. jtello@fing.luz.edu.ve b Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia. agustin.marulanda@escuelaing.edu.cospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Modelación Estratégica en Energía y Potenciaspa
dc.identifier.doi10.15446/dyna.v84n202.63354
dc.identifier.urlhttps://doi.org/10.15446/dyna.v84n202.63354
dc.publisher.placeMedellin, Colombia.spa
dc.relation.citationeditionRevista DYNA, 84(202), pp. 102-111, September, 2017.spa
dc.relation.citationendpage111spa
dc.relation.citationissue202spa
dc.relation.citationstartpage102spa
dc.relation.citationvolume84spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalDynaspa
dc.relation.referencesBorlase, S., Smart grids: Infrastructure, technology, and solutions. CRC Press, 2016.spa
dc.relation.referencesElectric Power Research Institute (EPRI), Report to NIST on the smart grid interoperability standards roadmap, EPRI, Contract No. SB1341-09-CN-0031-Deliverable, pp. 1-167, 2009.spa
dc.relation.referencesNational Institute of Standards and Technology, NIST Special Publication 1108 NIST Framework and roadmap for smart grid interoperability standards, 2010.spa
dc.relation.referencesPappu, V., Carvalho, M. and Pardalos, P.M., Optimization and security challenges in smart power grids. Springer, 2013.spa
dc.relation.referencesMomoh, J.A., Electric power system applications of optimization, 53, 2001.spa
dc.relation.referencesCalafiore, G.C. and Ghaoui, LE., Optimization models. Cambridge University Press, 2014.spa
dc.relation.referencesSánchez, P. et al., Modelos matemáticos de optimización, Madrid, 2010.spa
dc.relation.referencesRenewable Energy Policy Network for the 21st Century (REN21), Renewables 2016: Global status report. 2016.spa
dc.relation.referencesArrillaga, J., Watson, N. and Liu, Y., Flexible power transmission the HVDC Options. John Wiley & Sons, Ltd, 2007.spa
dc.relation.referencesEuropean Technology Platform on Smartgrids, Consolidated view of the european platform on smartgrids, 2015.spa
dc.relation.referencesU.S. Department of Energy, 2014 Smart grid system report(August. 2014.spa
dc.relation.referencesHolttinen, H., Meibom, P. and Orths, A., Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration, Wind Energy, 14(2), pp. 179-192, 2011. DOI: 10.1109/TPWRS.2010.2070848spa
dc.relation.referencesEftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B. and Loehr, J., Impact of increased penetration of photovoltaic generation on power systems, Power Syst. IEEE Trans., 28(2), pp. 893-901, 2013. DOI: 10.1109/TPWRS.2012.2216294spa
dc.relation.referencesMahmoud, M.S. and AL-Sunni, F.M., Control and optimization of distributed generation systems, 2015.spa
dc.relation.referencesAckermann, T., Andersson, G. and Söder, L., Distributed generation: A definition, Electr. Power Syst. Res., 57(3), pp. 195-204, 2001. DOI: 10.1016/S0378-7796(01)00101-8spa
dc.relation.referencesLi, R. and Zhou, F., Microgrid technology and engineering application. Elsevier Science & Technology Books, 2015.spa
dc.relation.referencesVanitha, R., Baskaran, J. and Sudhakaran, M., Multi Objective Optimal Power Flow with STATCOM using DE in WAFGP, Indian J. Sci. Technol., 8(2, pp. 191-198, 2015. DOI: 10.17485/ijst/2015/v8i1/56654spa
dc.relation.referencesKim, C.K., Sood, V.K., Jang, G.S., Lim, S.J. and Lee, S.J., HVDC Transmission: Power Conversion Applications in Power Systems. Wiley, 2009.spa
dc.relation.referencesCarrizosa, M.J.J., Navas, F.D., Damm, G. and Lamnabhi-Lagarrigue, F.F., Optimal power flow in multi-terminal HVDC grids with offshore wind farms and storage devices, Int. J. Electr. Power Energy Syst., 65, pp. 291-298, 2015. DOI: 10.1016/j.ijepes.2014.10.016spa
dc.relation.referencesKondoh, J. et al., Electrical energy storage systems for energy networks, Energy Convers. Manag., 41(17), pp. 1863-1874, 2000.spa
dc.relation.referencesLuo, X., Wang, J., Dooner, M. and Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137, pp. 511-536, 2015. DOI: 10.1016/j.apenergy.2014.09.081spa
dc.relation.referencesZhao, H., Wu, Q., Hu, S., Xu, H., Rasmussen, C.N. and Nygaard, C., Review of energy storage system for wind power integration support, Appl. Energy, 137, pp. 545-553, DOI: 2014. 10.1016/j.apenergy.2014.04.103spa
dc.relation.referencesLosi, A., Mancarella, P. and Vicino, A., Integration of demand response into the electricity chain: Challenges, opportunities and smart grid solutions. Wiley, 2015.spa
dc.relation.referencesU.S. Department of Energy, Benefits of demand response in electricity markets and recommendations for achieving them, 2009.spa
dc.relation.referencesCappers, P., Goldman, C. and Kathan, D., Demand response in U.S. electricity markets: Empirical Evidence, Berkeley, U.S.A., 2009.spa
dc.relation.referencesSiano, P., Demand response and smart grids - A survey, renew. Sustain. Energy Rev., 30, pp. 461-478, 2014.spa
dc.relation.referencesFathima, A.H. and Palanisamy, K., Optimization in microgrids with hybrid energy systems - A review, renew. Sustain. Energy Rev., 45, pp. 431-446, 2015. DOI: 10.1016/j.rser.2015.01.059spa
dc.relation.referencesSinha, S. and Chandel, S.S., Review of software tools for hybrid renewable energy systems, renew. Sustain. Energy Rev., 32, pp. 192-205, 2014. DOI: 10.1016/j.rser.2014.01.035spa
dc.relation.referencesBhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M. and Ahn, S.-H., Optimization of hybrid renewable energy systems: A review, Int. J. Precis. Eng. Manuf. Technol., 2(1), pp. 99-112, 2015.spa
dc.relation.referencesSinha, S. and Chandel, S.S., Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems, Renew. Sustain. Energy Rev., 50, pp. 755-769, 2015. DOI: 10.1016/j.rser.2015.05.040spa
dc.relation.referencesCamargo, L.A.S., Ramos, D.S., Guarnier, E., Ishida, S. and Matsudo, E., Alternative generation sources portfolio: Optimal resource allocation and risk analysis supported by genetics algorithms, IEEE Lat. Am. Trans., 14(7), pp. 3232-3241, 2016.spa
dc.relation.referencesAbdelaziz, A.Y., Hegazy, Y.G., El-Khattam, W. and Othman, M.M., Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks, Electr. Power Syst. Res., 119, pp. 34-44, 2015. DOI: 10.1016/j.epsr.2014.09.005spa
dc.relation.referencesWang, J. and Yang, F., Optimal capacity allocation of standalone wind/solar/battery hybrid power system based on improved particle swarm optimisation algorithm, IET Renew. Power Gener., 7(5), pp. 443-448, 2013.spa
dc.relation.referencesZhou, W., Lou, C., Li, Z., Lu, L. and Yang, H., Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems, Appl. Energy, 87(2), pp. 380-389, 2010.spa
dc.relation.referencesRodrigues, S., Bauer, P. and Bosman, P.A.N., Multi-objective optimization of wind farm layouts - Complexity, constraint handling and scalability, Renew. Sustain. Energy Rev., 65, pp. 587-609, 2016.spa
dc.relation.referencesYang, J., Feng, X., Tang, Y., Yan, J., He, H. and Luo, C., A power system optimal dispatch strategy considering the flow of carbon emissions and large consumers, Energies, 8(9), pp. 9087-9106, 2015. DOI: 10.3390/en8099087spa
dc.relation.referencesSummers, T., Warrington, J., Morari, M. and Lygeros, J., Stochastic optimal power flow based on conditional value at risk and distributional robustness, Int. J. Electr. Power Energy Syst., 72, pp. 116-125, 2015. DOI: 10.1016/j.ijepes.2015.02.024spa
dc.relation.referencesDufo-López, R. and Bernal-Agustín, J.L., Multi-objective design of PV-wind-diesel-hydrogen-battery systems, Renew. Energy, 33(12), pp. 2559-2572, 2008.spa
dc.relation.referencesOuld-Bilal, B., Sambou, V., Ndiaye, P.A., Kébé, C.M.F. and Ndongo, M., Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP), Renew. Energy, 35(10), pp. 2388-2390, DOI: 2010. 10.1016/j.renene.2010.03.004spa
dc.relation.referencesMartinez, G., Anderson, L.C., Anderson, L. and Martínez, G., Toward a scalable chance-constrained formulation for unit commitment to manage high penetration of variable generation, en 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014, pp. 723-730, 2014.spa
dc.relation.referencesTaghavi, R., Reza, A. and Samet, H., Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation, 89, 2015.spa
dc.relation.referencesAtwa, Y.M. and El-Saadany, E.F., Probabilistic approach for optimal allocate on of wind-based distributed generation in distribution systems, IET Renew. Power Gener., 5(1), pp. 79-88, 2011. DOI: 10.1049/iet-rpg.2009.0011spa
dc.relation.referencesPeng, X., Lin, L., Zheng, W. and Liu, Y., Crisscross optimization algorithm and monte carlo simulation for solving optimal distributed generation allocation problem, Energies, 8(12), pp. 13641-13659, 2015.spa
dc.relation.referencesShahzad, M., Ahmad, I., Gawlik, W. and Palensky, P., Load concentration factor based analytical method for optimal placement of multiple distribution generators for loss minimization and voltage profile improvement, Energies, 9(4), 2016.spa
dc.relation.referencesTheo, W.L., Lim, J.S., Ho, W.S., Hashim, H. and Lee, C.T., Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods, Renew. Sustain. Energy Rev., 67, pp. 531-573, 2017. DOI: 10.1016/j.rser.2016.09.063spa
dc.relation.referencesAnsarian, M., Sadeghzadeh, S.M. and Fotuhi-firuzabad, M., Optimum generation dispatching of distributed resources in smart grids, 2014.spa
dc.relation.referencesLasseter R., et al., The CERTS MicroGrid Concept, 2002.spa
dc.relation.referencesBhuiyan, F.A., Yazdani, A. and Primak, S.L., Optimal sizing approach for islanded microgrids, IET Renew. Power Gener., 9(2), pp. 166-175, 2015.spa
dc.relation.referencesMa, Y., Ji, J. and Tang, X., Triple-objective optimal sizing based on dynamic strategy for an islanded hybrid energy microgrid, Int. J. Green Energy, November, 2016.spa
dc.relation.referencesFossati, J.P., Galarza, A., Martín-Villate, A. and Fontán, L., A method for optimal sizing energy storage systems for microgrids, Renew. Energy, 77, pp. 539-549, 2015.spa
dc.relation.referencesGhiani, E., Vertuccio, C. and Pilo, F., Optimal sizing and management of a smart Microgrid for prevailing self-consumption, 2015 IEEE Eindhoven Power Tech. pp. 1-6, 2015. DOI: 10.1109/PTC.2015.7232554spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcSistemas híbridos de energíaspa
dc.subject.armarcHybrid power systemseng
dc.subject.proposalOptimizaciónspa
dc.subject.proposalEnergías renovablesspa
dc.subject.proposalRedes inteligentesspa
dc.subject.proposalFlujo óptimo de potenciaspa
dc.subject.proposalOptimizationspa
dc.subject.proposalRenewable energiesspa
dc.subject.proposalSmart gridsspa
dc.subject.proposalOptimal power flowspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

The author; licensee Universidad Nacional de Colombia.
Excepto si se señala otra cosa, la licencia del ítem se describe como The author; licensee Universidad Nacional de Colombia.