Mostrar el registro sencillo del ítem

dc.contributor.authorAroca Trujillo, Jorge Luis
dc.contributor.authorPérez Ruiz, Alexander
dc.contributor.authorRodriguez Serrezuela, Ruthber
dc.date.accessioned2021-05-26T13:45:38Z
dc.date.accessioned2021-10-01T17:19:06Z
dc.date.available2021-05-26T13:45:38Z
dc.date.available2021-10-01T17:19:06Z
dc.date.issued2017
dc.identifier.issn1687-9619
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1491
dc.description.abstractThe utility of a robot manipulator focuses on the ability to locate its end effector in a position with a determined orientation following a specified trajectory. For this, algorithms were used in order to generate and control the movements joints of robot in a synchronized way. The high-level languages to program robots are based on three types of movement: joint interpolation (MOVEJ), linear interpolation (MOVES), and circular arcs (MOVEC), which are used to develop any type of task. In this work, these three movements are implemented in the industrial controller CompactRIO, as part of the reconditioning process of a robot manipulator of five degrees of freedom (5 DOF) whose controller was obsolete. As a result, it will have an interface in LabVIEW where you can view and modify the basic parameters implemented in the industrial controller. In addition, the results of the validation tests of the joint positions and the end effector of the manipulator will be found.eng
dc.description.abstractLa utilidad de un robot manipulador se centra en la capacidad de ubicar su efector final en una posición con una orientación determinada siguiendo una trayectoria específica. Para ello, se utilizaron algoritmos con el fin de generar y controlar los movimientos de las articulaciones del robot de forma sincronizada. Los lenguajes de alto nivel para programar robots se basan en tres tipos de movimiento: interpolación conjunta (MOVEJ), interpolación lineal (MOVES) y arcos circulares (MOVEC), que se utilizan para desarrollar cualquier tipo de tarea. En este trabajo, estos tres movimientos se implementan en el controlador industrial CompactRIO, como parte del proceso de reacondicionamiento de un robot manipulador de cinco grados de libertad (5 DOF) cuyo controlador estaba obsoleto. Como resultado, tendrá una interfaz en LabVIEW donde podrá ver y modificar los parámetros básicos implementados en el controlador industrial.spa
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherHindawi Limitedspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.hindawi.com/journals/jr/2017/7508787/spa
dc.titleGeneration and Control of Basic Geometric Trajectories for a Robot Manipulator Using CompactRIO®eng
dc.title.alternativeGeneración y control de trayectorias geométricas básicas para un robot manipulador usando CompactRIO®spa
dc.typeArtículo de revistaspa
dc.description.notes1 University Corporation of Huila, Corhuila, Neiva, Colombia 2 Escuela Colombiana de Ingenier´ıa Julio Garavito, Bogota D.C., Colombia ´ Correspondence should be addressed to Ruthber Rodriguez Serrezuela; ruthber.rodriguez@corhuila.edu.cospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupInnovación docente e investigación educativa - INNOVAD-IEspa
dc.identifier.doi10.1155/2017/7508787
dc.identifier.urlhttps://doi.org/10.1155/2017/7508787
dc.publisher.placeEgipto.spa
dc.relation.citationeditionJournal of Robotics, Volume 2017, Article ID 7508787, 11 pages.spa
dc.relation.citationendpage11spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume2017spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalJournal of Roboticsspa
dc.relation.referencesW. Xu, L. Dongsheng, and W. Mingming, “Complete calibration of industrial robot with limited parameters and neural network,” in Proceedings of the IEEE 4th International Symposium on Robotics and Intelligent Sensors (IRIS '16), pp. 103–108, Tokyo, Japan, December 2016.spa
dc.relation.referencesF. Petit and A. Albu-Schäffer, “Cartesian impedance control for a variable stiffness robot arm,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '11), pp. 4180–4186, San Francisco, Claif, USA, September 2011.spa
dc.relation.referencesP. Arena, S. Fazzino, L. Fortuna, and P. Maniscalco, “Game theory and non-linear dynamics: The Parrondo Paradox case study,” Chaos, Solitons & Fractals, vol. 17, no. 2-3, pp. 545–555, 2003.spa
dc.relation.referencesM. S. Kazemi and M. J. Dominguez, “Simulation and evaluation of neuro-controllers applied in a SCORBOT,” in Proceedings of the IEEE International Conference on Automatica (ICA-ACCA '16), Curico, Chile, October 2016.spa
dc.relation.referencesE. Zurek Varela and R. López Beltrán, “Carga y descarga automática de una fresadora de control numérico utilizando un robot Scorbot-ER 4pc,” Revista Científica Ingeniería y Desarrollo, vol. 7, pp. 113–119, 2011.spa
dc.relation.referencesV. A. Deshpande and P. M. George, “Analytical Solution for Inverse Kinematics of SCORBOT-ER-Vplus Robot,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 3, 2012.spa
dc.relation.referencesA. González Echeverri, Análisis cinemático y dinámico del robot Scorbot-ER Vplus para la nueva configuración en una base deslizante [Bachelor’s thesis], Universidad Tecnológica de Pereira, Pereira, Colombia, 2014.spa
dc.relation.referencesE. Robotec, Scorbot er-4pc: User's Manual, 1982.spa
dc.relation.referencesA. Elfasakhany, E. Yanez, K. Baylon, and R. Salgado, “Design and development of a competitive low-cost robot arm with four degrees of freedom,” Modern Mechanical Engineering, vol. 1, no. 2, article 47, 2011.spa
dc.relation.referencesNational Instruments, The CompactRIO Platform, endless Capabilities, Unrivaled Performance, 2014, http://www.ni.com/compactrio/.spa
dc.relation.referencesH. C. Fang, S. K. Ong, and A. Y. C. Nee, “Interactive robot trajectory planning and simulation using augmented reality,” Robotics and Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 227–237, 2012.spa
dc.relation.referencesP. Corke, Robotics, Vision and Control, Springer, Berlin, Germany, 2011.spa
dc.relation.referencesA. Hemami, “Kinematics of two-arm robots,” IEEE Journal on Robotics and Automation, vol. 2, no. 4, pp. 225–228, 1986.spa
dc.relation.referencesA. A. Mohammed and M. Sunar, “Kinematics modeling of a 4-DOF robotic arm,” in Proceedings of the International Conference on Control, Automation and Robotics (ICCAR '15), pp. 87–91, Singapore, May 2015.spa
dc.relation.referencesJ. H. C. Rojas, R. R. Serrezuela, J. A. Q. López, and K. L. R. Perdomo, “LQR hybrid approach control of a robotic arm two degrees of freedom,” International Journal of Applied Engineering Research, vol. 11, no. 17, pp. 9221–9228, 2016.spa
dc.relation.referencesC. S. G. Lee, “Robot arm kinematics, dynamics, and control,” Computer, vol. 15, no. 12, pp. 62–80, 1982.spa
dc.relation.referencesA. Cayley, An Elementary Treatise on Elliptic Functions, Deighton Bell & Co, Cambridge, UK, 1876.spa
dc.relation.referencesT. Barrera, A. Hast, and E. Bengtsson, “Incremental spherical linear interpolation,” in Proceedings of the Annual SIGRAD Conference. Special Theme-Environmental Visualization, pp. 7–10, Linköping University Electronic Press, November 2004.spa
dc.relation.referencesV. E. Kremer, Quaternions and SLERP, University of Saarbrucken, Department for Computer Science Seminar Character Animation, Saarbrücken, German, 2008.spa
dc.relation.referencesJ. S. Ahn, W. J. Chung, and S. S. Park, Application of Quaternion Interpolation (SLERP) to the Orientation Control of 6-Axis Articulated Robot using LabVIEWⓇ and RecurDynⓇ.spa
dc.relation.referencesK. Shoemake, “Animating rotation with quaternion curves,” in Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '85), pp. 245–254, San Francisco, Calif, USA, July 1985.spa
dc.relation.referencesR. R. Kumar and P. Chand, “Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u,” in Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA '15), pp. 364–369, Queenstown, New Zealand, February 2015.spa
dc.relation.referencesR. R. Serrezuela, A. F. C. Chavarro, M. A. T. Cardozo, A. L. Toquica, and L. F. O. Martinez, Kinematic modelling of a robotic arm manipulator using matlab, 2006.spa
dc.relation.referencesY. Angal and A. Gade, “LabVIEW controlled robot for object handling using NI myRIO,” in Proceedings of the IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT '16), Pune, India, December 2016.spa
dc.relation.referencesM. M. Ali, H. Liu, N. Stoll, and K. Thurow, “Kinematic analysis of 6-DOF arms for H20 mobile robots and labware manipulation for transportation in life science labs,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 10, no. 4, pp. 40–52, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.armarcRobóticaspa
dc.subject.armarcRoboticseng
dc.subject.armarcRobots móvilesspa
dc.subject.armarcMobile robotsspa
dc.subject.armarcRobots - Movimientospa
dc.subject.armarcRobots - Motioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/