Mostrar el registro sencillo del ítem

dc.contributor.authorCifuentes Garcia, Carlos Andrés
dc.contributor.authorCasas, Jonathan
dc.contributor.authorLeal-Junior, Arnaldo
dc.contributor.authorDíaz, Camilo R.
dc.contributor.authorFrizera, Anselmo
dc.contributor.authorMúnera, Marcela
dc.date.accessioned2021-05-26T20:33:34Z
dc.date.accessioned2021-10-01T17:16:48Z
dc.date.available2021-05-26
dc.date.available2021-10-01T17:16:48Z
dc.date.issued2019
dc.identifier.issn1996-1944
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1497
dc.description.abstractThis paper presents the development and validation of a polymer optical-fiber strain-gauge sensor based on the light-coupling principle to measure axial deformation of elastic tendons incorporated in soft actuators for wearable assistive robots. An analytical model was proposed and further validated with experiment tests, showing correlation with a coefficient of R = 0.998 between experiment and theoretical data, and reaching a maximum axial displacement range of 15 mm and no significant hysteresis. Furthermore, experiment tests were carried out attaching the validated sensor to the elastic tendon. Results of three experiment tests show the sensor’s capability to measure the tendon’s response under tensile axial stress, finding 20.45% of hysteresis in the material’s response between the stretching and recovery phase. Based on these results, there is evidence of the potential that the fiber-optical strain sensor presents for future applications in the characterization of such tendons and identification of dynamic models that allow the understanding of the material’s response to the development of more efficient interaction-control strategies.eng
dc.description.abstractEste artículo presenta el desarrollo y la validación de un sensor de galgas extensométricas de fibra óptica de polímero basado en el principio de acoplamiento de la luz para medir la deformación axial de tendones elásticos incorporados en actuadores blandos para robots de asistencia vestibles. Se propuso un modelo analítico y se validó con pruebas experimentales, mostrando una correlación con un coeficiente de R = 0,998 entre los datos experimentales y los teóricos, y alcanzando un rango de desplazamiento axial máximo de 15 mm y sin histéresis significativa. Además, se realizaron pruebas experimentales fijando el sensor validado al tendón elástico. Los resultados de tres pruebas experimentales muestran la capacidad del sensor para medir la respuesta del tendón bajo tensión axial de tracción, encontrando un 20,45% de histéresis en la respuesta del material entre la fase de estiramiento y la de recuperación. A partir de estos resultados, se evidencia el potencial que presenta el sensor de deformación de fibra óptica para futuras aplicaciones en la caracterización de este tipo de tendones y la identificación de modelos dinámicos que permitan entender la respuesta del material para el desarrollo de estrategias de interacción-control más eficientes.spa
dc.format.extent17 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDIPspa
dc.sourcehttps://www.mdpi.com/1996-1944/12/9/1443spa
dc.titleLarge-Range Polymer Optical-Fiber Strain-Gauge Sensor for Elastic Tendons in Wearable Assistive Robotsspa
dc.typeArtículo de revistaspa
dc.description.notesBiomedical Engineering Department, Colombian School of Engineering Julio Garavito, Bogotá 111166, Colombia; marcela.munera@escuelaing.edu.co (M.M.); carlos.cifuentes@escuelaing.edu.co (C.A.C.)eng
dc.description.notesGraduate Program of Electrical Engineering, Federal University of Espirito Santo, Vitoria 29075-910, Brazil; leal-junior.arnaldo@ieee.org (A.L.-J.); c.rodriguez.2016@ieee.org (C.R.D.); frizera@ieee.org (A.F.)spa
dc.description.notesCorrespondence: jonathan.casas@escuelaing.edu.co; Tel.: +57-350-885-8697spa
dc.description.notesReceived: 1 April 2019; Accepted: 29 April 2019; Published: 3 May 2019spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGiBiomespa
dc.identifier.doi10.3390/ma12091443
dc.identifier.urlhttps://doi.org/10.3390/ma12091443
dc.publisher.placeSuizaspa
dc.relation.citationeditionMaterials 2019, 12(9), 1443; https://doi.org/10.3390/ma12091443spa
dc.relation.citationendpage17spa
dc.relation.citationissue9spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalMaterialsspa
dc.relation.referencesPolygerinos, P.; Correll, N.; Morin, S.A.; Mosadegh, B.; Onal, C.D.; Petersen, K.; Cianchetti, M.; Tolley, M.T.; Shepherd, R.F. Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction. Adv. Eng. Mater. 2017, 19, 1700016.eng
dc.relation.referencesHuo, W.; Mohammed, S.; Moreno, J.C.; Amirat, Y. Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art. IEEE Syst. J. 2016, 10, 1068–1081.eng
dc.relation.referencesViteckova, S.; Kutilek, P.; Jirina, M. Wearable lower limb robotics: A review. Biocybern. Biomed. Eng. 2013, 33, 96–105.eng
dc.relation.referencesMohammed, S.; Amirat, Y.; Rifai, H. Lower-Limb Movement Assistance through Wearable Robots: State of the Art and Challenges. Adv. Robot. 2012, 37–41eng
dc.relation.referencesMoreno, J.; Asin, G.; Pons, J.; Cuypers, H.; Vanderborght, B.; Lefeber, D.; Ceseracciu, E.; Reggiani, M.; Thorsteinsson, F.; Del-Ama, A.; et al. Symbiotic Wearable Robotic Exoskeletons: The Concept of the BioMot Project J.C.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8820, pp. 72–83.eng
dc.relation.referencesVeale, A.J.; Xie, S.Q. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies. Med. Eng. Phys. 2016, 38, 317–325eng
dc.relation.referencesAlbu-Schaffer, A.; Fischer, M.; Schreiber, G.; Schoeppe, F.; Hirzinger, G. Soft robotics: What Cartesian stiffness can obtain with passively compliant, uncoupled joints? In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; pp. 3295–3301.eng
dc.relation.referencesZinn, M.; Khatib, O.; Roth, B.; Salisbury, J.K. A New Actuation Approach for Human Friendly Robot Design. Exp. Robot. VIII 2003, 5, 113–122.eng
dc.relation.referencesKoganezawa, K.; Ban, S. Stiffness control of antagonistically driven redundant D.O.F. manipulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; pp. 2280–2285eng
dc.relation.referencesManti, B.M.; Cacucciolo, V.; Cianchetti, M. Stiffening in Soft Robotics. IEEE Robot. Autom. Mag. 2016, 23, 93–106. [eng
dc.relation.referencesVeneman, J.F.; Ekkelenkamp, R.; Kruidhof, R.; Van Der Helm, F.C.; Van Der Kooij, H. Design of a series elastic- and bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training. In Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; Volume 2005, pp. 496–499eng
dc.relation.referencesKong, K.; Jeon, D. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatron. 2006, 11, 428–432.eng
dc.relation.referencesTsagarakis, N.; Caldwell, D.G. Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training. Auton. Robot. 2003, 15, 21–33.eng
dc.relation.referencesCostz, N.; Kousidou, S.; Caldwell, D.G.; Tsagarakits, N.G.; Sarakoglou, I. “Soft” Exoskeletons for Upper and Lower Body Rehabilitation—Design, Control and Testing. Int. J. Humanoid Robot. 2007, 4, 549–573eng
dc.relation.referencesKim, J.; Hwang, S.; Sohn, R.; Lee, Y.; Kim, Y. Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: A preliminary study. Appl. Bionics Biomech. 2011, 8, 377–384eng
dc.relation.referencesCain, S.M.; Gordon, K.E.; Ferris, D.P. Locomotor adaptation to a powered ankle-foot orthosis depends on control method. J. Neuroeng. Rehabil. 2007, 13, 1–13. [eng
dc.relation.referencesManchola, M.; Serrano, D.; Daniel, G.; Ballen, F.; Casas, D.; Munera, M. Wearable Robotics: Challenges and Trends. In Proceedings of the 2nd International Symposium on Wearable Robotics—WeRob2016, Segovia, Spain, 18–21 October 2016; Volume 16, pp. 160–164eng
dc.relation.referencesRossiter, J.; Hauser, H. Soft Robotics—The Next Industrial Revolution? [Industrial Activities]. IEEE Robot. Autom. Mag. 2016, 23, 17–20.eng
dc.relation.referencesLeal-Junior, A.; Casas, J.; Marques, C.; Pontes, M.; Frizera, A.; Leal-Junior, A.; Casas, J.; Marques, C.; Pontes, M.J.; Frizera, A. Application of Additive Layer Manufacturing Technique on the Development of High Sensitive Fiber Bragg Grating Temperature Sensors. Sensors 2018, 18, 4120. [eng
dc.relation.referencesGoldfield, E.C.; Park, Y.L.; Chen, B.R.; Hsu, W.H.; Young, D.; Wehner, M.; Kelty-Stephen, D.G.; Stirling, L.; Weinberg, M.; Newman, D.; et al. Bio-Inspired Design of Soft Robotic Assistive Devices: The Interface of Physics, Biology, and Behavior. Ecol. Psychol. 2012, 24, 300–327. [eng
dc.relation.referencesPinet, É. Fabry-Pérot Fiber-Optic Sensors for Physical Parameters Measurement in Challenging Conditions. J. Sens. 2009, 2009, 1–9.eng
dc.relation.referencesLeal-Junior, A.G.; Frizera, A.; Vargas-Valencia, L.; Dos Santos, W.M.; Bo, A.P.; Siqueira, A.A.; Pontes, M.J. Polymer Optical Fiber Sensors in Wearable Devices: Toward Novel Instrumentation Approaches for Gait Assistance Devices. IEEE Sens. J. 2018, 18, 7085–7092.eng
dc.relation.referencesJames, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49–R61eng
dc.relation.referencesPatrick, H.; Williams, G.; Kersey, A.; Pedrazzani, J.; Vengsarkar, A. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technol. Lett. 1996, 8, 1223–1225.eng
dc.relation.referencesChan, T.; Yu, L.; Tam, H.; Ni, Y.; Liu, S.; Chung, W.; Cheng, L. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation. Eng. Struct. 2006, 28, 648–659.eng
dc.relation.referencesGuo, T.; Liu, F.; Guan, B.O.; Albert, J. Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33.eng
dc.relation.referencesShao, L.Y.; Albert, J. Lateral force sensor based on a core-offset tilted fiber Bragg grating. Opt. Commun. 2011, 284, 1855–1858.eng
dc.relation.referencesJames, S.; Dockney, M.; Tatam, R. Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electron. Lett. 1996, 32, 1133. [eng
dc.relation.referencesBilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical sensors based on plastic fibers. Sensors (Switzerland) 2012, 12, 12184–12207.eng
dc.relation.referencesDunne, L.E.; Walsh, P.; Smyth, B.; Caulfield, B. Design and evaluation of a wearable optical sensor for monitoring seated spinal posture. In Proceedings of the 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 65–68.eng
dc.relation.referencesZhao, B.H.; Jalving, J.; Huang, R.; Knepper, R.; Ruina, A.; Shepherd, R. A Helping Hand: Soft Orthosis with Integrated Optical Strain Sensors and EMG Control. IEEE Robot. Autom. Mag. 2016, 23, 55–64eng
dc.relation.referencesJae Yoo, W.; Won Jang, K.; Ki Seo, J.; Yeon Heo, J.; Soo Moon, J.; Park, J.Y.; Lee, B. Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System. J. Opt. Soc. Korea 2010, 14, 235–239.eng
dc.relation.referencesGrillet, A.; Kinet, D.; Witt, J.; Schukar, M.; Krebber, K.; Pirotte, F.; Depré, A. Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring. IEEE Sens. J. 2008, 8, 1215eng
dc.relation.referencesHarnett, C.K.; Zhao, H.; Shepherd, R.F. Stretchable Optical Fibers: Threads for Strain-Sensitive Textiles. Adv. Mater. Technol. 2017, 2, 1–7.eng
dc.relation.referencesOptoelectronically Innervated Soft Prosthetic Hand via Stretchable Optical Waveguides. Available online: https://pdfs.semanticscholar.org/70c4/4a842f20ff3c45d74d6e2e6653bcc40ef388.pdf (accessed on 1 April 2019)eng
dc.relation.referencesGuo, J.; Liu, X.; Jiang, N.; Yetisen, A.K.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S.H. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244–10249.eng
dc.relation.referencesTaffoni, F.; Formica, D.; Saccomandi, P.; Pino, G.; Schena, E.; Taffoni, F.; Formica, D.; Saccomandi, P.; Pino, G.D.; Schena, E. Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview. Sensors 2013, 13, 14105–14120.eng
dc.relation.referencesTo, C.; Hellebrekers, T.; Jung, J.; Yoon, S.J.; Park, Y.L. A Soft Optical Waveguide Coupled With Fiber Optics for Dynamic Pressure and Strain Sensing. IEEE Robot. Autom. Lett. 2018, 3, 3821–3827.eng
dc.relation.referencesLeal-Junior, A.G.; Frizera, A.; Marques, C.; Sánchez, M.R.; Botelho, T.R.; Segatto, M.V.; Pontes, M.J. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis. Opt. Fiber Technol. 2018, 41, 205–211.eng
dc.relation.referencesVallan, A.; Casalicchio, M.L.; Olivero, M.; Perrone, G. Assessment of a Dual-Wavelength Compensation Technique for Displacement Sensors Using Plastic Optical Fibers. IEEE Trans. Instrum. Meas. 2012, 61, 1377–1383.eng
dc.relation.referencesZawawi, M.A.; O’Keeffe, S.; Lewis, E. Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation. Sensors (Switzerland) 2013, 13, 14466–14483.eng
dc.relation.referencesBeach, Z.M.; Gittings, D.J.; Soslowsky, L.J. Muscle and Tendon Injuries. Med. Sci. Sports Exerc. 2018, 50, 388.eng
dc.relation.referencesSvensson, R.B.; Hassenkam, T.; Hansen, P.; Peter Magnusson, S. Viscoelastic behavior of discrete human collagen fibrils. J. Mech. Behav. Biomed. Mater. 2010, 3, 112–115.eng
dc.relation.referencesAtkinson, T.S.; Ewers, B.J.; Haut, R.C. The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J. Biomech. 1999, 32, 907–914.eng
dc.relation.referencesWren, T.A.L.; Yerby, S.A.; Beaupr, G.S.; Carter, D.R.; Beaupré, G.S. Mechanical properties of the human achilles tendon. Clin. Biomech. 2001, 16, 245–251.eng
dc.relation.referencesPetit, F.; Chalon, M.; Friedl, W.; Grebenstein, M.; Albu-sch, A. Bidirectional Antagonistic Variable Stiffness Actuation: Analysis , Design & Implementation. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4189–4196eng
dc.relation.referencesBonsignorio, F.; Cangelosi, A. Co-exploring Actuator Antagonism and Bio-inspired Control in a Printable Robot Arm. In Proceedings of the 14th International Conference on Simulation of Adaptive Behavior, SAB 2016, Aberystwyth, UK, 23–26 August 2016; Volume 1, pp. 244–255eng
dc.relation.referencesKiesel, S.; Peters, K.; Hassan, T.; Kowalsky, M. Behaviour of intrinsic polymer optical fibre sensor for large-strain applications. Meas. Sci. Technol. 2007, 18, 3144–3154.eng
dc.relation.referencesKrebber, K.; Lenke, P.; Liehr, S.; Witt, J.; Schukar, M. Smart technical textiles with integrated POF sensors. Proc. SPIE 6933 Smart Sens. Phenom. Technol. Netw. Syst. 2008, 6933, 69330V.eng
dc.relation.referencesWelker, D.J.; Johns, W.E.; Jiang, C.; Ding, J.L.; Kuzyk, M.G. Fabrication and mechanical behavior of dye-doped polymer optical fiber. J. Appl. Phys. 2002, 92, 4–12.eng
dc.relation.referencesAntunes, P.F.C.; Varum, H.; Andre, P.S. Intensity-encoded polymer optical fiber accelerometer. IEEE Sens. J. 2013, 13, 1716–1720.eng
dc.relation.referencesZiemann, Q.; Krauser, J.; Zamzow, P.E. POF Handbook—Optical Short Range Transmission Systems; Springer: Berlin/Heidelberg, Germany, 2008; p. 455.eng
dc.relation.referencesSánchez-Manchola, M.; Gómez-Vargas, D.; Casas-Bocanegra, D.; Múnera, M.; Cifuentes, C.A. Development of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–6.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcRobótica médica
dc.subject.armarcRobots
dc.subject.proposalPhysical humanspa
dc.subject.proposalRobot interactionspa
dc.subject.proposalSoft roboticsspa
dc.subject.proposalOpticalspa
dc.subject.proposalFiber strain gaugespa
dc.subject.proposalFísico humanospa
dc.subject.proposalInteracción con el robotspa
dc.subject.proposalRobótica blandaspa
dc.subject.proposalÓpticaspa
dc.subject.proposalGalga extensométrica de fibraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • AA. Gibiome [38]
    Clasificación: A - Convocatoria 2018

Mostrar el registro sencillo del ítem