Mostrar el registro sencillo del ítem

dc.contributor.authorMunera Ramirez, Marcela Cristina
dc.contributor.authorChiementin, Xavier
dc.contributor.authorDuc, Sebastien
dc.contributor.authorBertucci, William
dc.date.accessioned2021-06-04T20:56:48Z
dc.date.accessioned2021-10-01T17:16:53Z
dc.date.available2021-06-04T20:56:48Z
dc.date.available2021-10-01T17:16:53Z
dc.date.issued2018
dc.identifier.issn1466-447X
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1556
dc.description.abstractVibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises. To analyse the dynamic response, the influence of the pedalling movement was taken into account. The results show that there was not significant influence of vibrations on HR and VO2 during this pedalling exercise. However, muscular activity presents a significant increase with the presence of vibration that is influenced by the frequency, but this increase was very low (< 1%). Also, the dynamic response shows an influence of the frequency as well as an influence of the different parts of the pedalling cycle. Those results help to explain the effects of vibration on the human body and the influence of the rider/bike interaction in those effects.spa
dc.description.abstractSe ha demostrado que la vibración en el ciclismo tiene efectos indeseables sobre la salud, la comodidad y el rendimiento del ciclista. En este estudio, 15 participantes realizaron ocho ejercicios de pedaleo submáximo de 6 minutos a una potencia constante (150W) y una cadencia de pedaleo (80 RPM) estando expuestos a vibraciones a diferentes frecuencias (20, 30, 40, 50, 60, 70 Hz) o sin vibración. Durante los ejercicios se midió el consumo de oxígeno (VO2), la frecuencia cardíaca (FC), la actividad EMG de superficie de siete músculos de las extremidades inferiores (GMax, RF, BF, VM, GAS, SOL y TA) y las aceleraciones en tres dimensiones en el tobillo, la rodilla y la cadera. Para analizar la respuesta dinámica, se tuvo en cuenta la influencia del movimiento de pedaleo. Los resultados muestran que no hubo una influencia significativa de las vibraciones en la FC y el VO2 durante este ejercicio de pedaleo. Sin embargo, la actividad muscular presenta un aumento significativo con la presencia de la vibración que está influenciada por la frecuencia, pero este aumento fue muy bajo (< 1%). Asimismo, la respuesta dinámica muestra una influencia de la frecuencia, así como una influencia de las diferentes partes del ciclo de pedaleo. Estos resultados ayudan a explicar los efectos de la vibración en el cuerpo humano y la influencia de la interacción ciclista/bicicleta en dichos efectos.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRoutledgespa
dc.titleAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cyclingspa
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGiBiomespa
dc.identifier.arkhttps://doi.org/10.1080/02640414.2017.1398407
dc.identifier.doi10.1080/02640414.2017.1398407
dc.publisher.placeEstados Unidosspa
dc.relation.citationeditionJournal of Sports Sciences : Volume 36, 2018 - Issue 13spa
dc.relation.citationendpage1475spa
dc.relation.citationissue13spa
dc.relation.citationstartpage1465spa
dc.relation.citationvolume36spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalJournal of Sports Sciencesspa
dc.relation.referencesAbercromby, A. F. J., Amonette, W. E., Layne, C. S., McFarlin, B. K., Hinman, M. R., & Paloski, W. H. (2007). Variation in neuromuscular responses during acute whole-body vibration exercise. Medicine and Science in Sports and Exercise, 39(9), 1642–1650. doi:10.1249/mss.0b013e318093f551eng
dc.relation.referencesArpinar-Avsar, P., Birlik, G., Sezgin, Ö. C., & Soylu, A. R. (2013). The effects of surface-induced loads on forearm muscle activity during steering a bicycle. Journal of Sports Science & Medicine, 12(February), 512–520. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772596/eng
dc.relation.referencesBressel, E., Smith, G., & Branscomb, J. (2010). Transmission of whole body vibration in children while standing. Clinical Biomechanics, 25(2), 181–186. doi:10.1016/j.clinbiomech.2009.10.016eng
dc.relation.referencesCarlso, S. (1982). The effect of vibration on the skeleton, joints and muscles. Applied Ergonomics, 13(4), 251–258. doi:10.1016/0003-6870(82)90064-3eng
dc.relation.referencesChiementin, X., Rigaut, M., Crequy, S., & Bertucci, W. (2011). Hand-arm vibration in cycling. Journal Vibration and Control, 19(16), 2551–2560. doi:10.1177/1077546312461024eng
dc.relation.referencesDe Luca, C. J. (1997). The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 13(2), 135-163. doi:10.1123/jab.13.2.135eng
dc.relation.referencesDorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857–865. doi:10.1016/j.jelekin.2007.03.002eng
dc.relation.referencesFattorini, L., Tirabasso, A., Lunghi, A., Di Giovanni, R., Sacco, F., & Marchetti, E. (2015). Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations. Journal of Electromyography and Kinesiology, 26(2016), 143–148. doi:10.1016/j.jelekin.2015.10.015eng
dc.relation.referencesFilingeri, D., Jemni, M., Bianco, A., Zeinstra, E., & Jimenez, A. (2012). The effects of vibration during maximal graded cycling exercise: A pilot study. Journal of Sports Science & Medicine, 11(3), 423–429. Retrieved from http://jssm.org/researchjssm-11-423.xml.xmleng
dc.relation.referencesFratini, A., La Gatta, A., Bifulco, P., Romano, M., & Cesarelli, M. (2009). Muscle motion and EMG activity in vibration treatment. Medical Engineering & Physics, 31(9), 1166–1172. doi:10.1016/j.medengphy.2009.07.014eng
dc.relation.referencesGiubilato, F., & Petrone, N. (2012). A method for evaluating the vibrational response of racing bicycles wheels under road roughness excitation. Procedia Engineering, 34, 409–414. doi:10.1016/j.proeng.2012.04.070eng
dc.relation.referencesGriffin, M. J. (1996). Handbook of human vibration. London: Academic Press, Elsevier.eng
dc.relation.referencesHarazin, B., & Grzesik, J. (1998). The transmission of vertical whole-body vibration to the body segments of standing subjects. Journal of Sound and Vibration, 215(4), 775–787. doi:10.1006/jsvi.1998.1675eng
dc.relation.referencesHazell, T. J., Jakobi, J. M., & Kenno, K. A. (2007). The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Applied Physiology, Nutrition, and Metabolism, 32(6), 1156–1163. doi:10.1139/H07-116eng
dc.relation.referencesHermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. doi:10.1016/S1050-6411(00)00027-4eng
dc.relation.referencesHölzel, C., Höchtl, F., & Senner, V. (2012). Cycling comfort on different road surfaces. Procedia Engineering, 34, 479–484. doi:10.1016/j.proeng.2012.04.082eng
dc.relation.referencesKiiski, J., Heinonen, A., & Kannus, P. (2008). Transmission of vertical whole body vibration to the human body. Journal of Bone and Mineral Research, 23(8), 1318–1325. doi:10.1359/jbmr.080315eng
dc.relation.referencesLienhard, K., Cabasson, A., Meste, O., & Colson, S. S. (2014). Determination of the optimal parameters maximizing muscle activity of the lower limbs during vertical synchronous whole-body vibration. European Journal of Applied Physiology, 114(7), 1493–1501. doi:10.1007/s00421-014-2874-1eng
dc.relation.referencesLiikavainio, T., Bragge, T., Hakkarainen, M., Jurvelin, J. S., Karjalainen, P. A., & Arokoski, J. P. (2007). Reproducibility of loading measurements with skin-mounted accelerometers during walking. Archives of Physical Medicine and Rehabilitation, 88(7), 907–915. doi:10.1016/j.apmr.2007.03.031eng
dc.relation.referencesMartin, B. J., & Park, H. (1997). Analysis of the tonic vibration reflex: Influence of vibration variables on motor unit synchronization and fatigue. Eur J Appl Physiol, 75, 504–511. doi:10.1007/s004210050196eng
dc.relation.referencesMester, J., Spitzenfeil, P., Schwarzer, J., & Seifriz, F. (1999). Biological reaction to vibration–Implications for sport. Journal of Science and Medicine in Sport/Sports Medicine Australia, 2(3), 211–226. doi:10.1016/S1440-2440(99)80174-1eng
dc.relation.referencesMunera, M., Bertucci, W., Duc, S., & Chiementin, X. (2016). Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomechanics, 15(4), 409–428. doi:10.1080/14763141.2016.1171894eng
dc.relation.referencesMunera, M., Chiementin, X., Crequy, S., & Bertucci, W. (2014). Physical risk associated with vibration at cycling. Mechanics & Industry, 15(6), 535–540. doi:10.1051/meca/2014057eng
dc.relation.referencesMunera, M., Chiementin, X., Murer, S., & Bertucci, W. (2015). Model of the risk assessment of hand-arm system vibrations in cycling: Case of cobblestone road. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 229(4), 231–238. doi:10.1177/1754337115579606eng
dc.relation.referencesMunera, M., Duc, S., Bertucci, W., & Chiementin, X. (2015). Physiological and dynamic response to vibration in cycling: A feasibility study. Mechanics & Industry, 16(5), 503. doi:10.1051/meca/2015028 [eng
dc.relation.referencesOlieman, M., Marin-Perianu, R., & Marin-Perianu, M. (2012). Measurement of dynamic comfort in cycling using wireless acceleration sensors. Procedia Engineering, 34, 568–573. doi:10.1016/j.proeng.2012.04.097eng
dc.relation.referencesPadulo, J., Chamari, K., & Ardigo, L. (2014). Walking and running on treadmill: The standard criteria for kinematics studies. Muscles Ligaments Tendons, 159–162. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187596/eng
dc.relation.referencesPadulo, J., Di Capua, R., & Viggiano, D. (2012). Pedaling time variability is increased in dropped riding position. European Journal of Applied Physiology, 112(8), 3161–3165. doi:10.1007/s00421-011-2282-8eng
dc.relation.referencesPadulo, J., Di Giminiani, R., Ibba, G., Zarrouk, N., Moalla, W., Attene, G., … Chamiari, K. (2014). The acute effect of whole body vibration on repeated shuttle-running in young soccer players. International Journal of Sports Medicine, 35(1), 49–54. doi:10.1055/s-0033-1345171eng
dc.relation.referencesPadulo, J., Powell, D. W., Ardigo, L. P., & Viggiano, D. (2015). Modifications in activation pf lower limbs muscles as a function of initial foot position in cycling. Journal of Electromyography Kinesiology, 25(4), 648–652. doi:10.1016/j.jelekin.2015.03.005eng
dc.relation.referencesParkin, J., & Sainte Cluque, E. (2014). The impact of vibration on comfort and bodily stress while cycling. In UTSG 46th Annual Conference, Newcastle University (pp. 6–8). Retrieved from: http://eprints.uwe.ac.uk/22320/1/Parkin%20and%20Cluque%20UTSG%20Paper.pdfeng
dc.relation.referencesPeretti, A., Pignalosa, L., Bonomini, F., Paoli, A., & Bartolucci, G. (2009). Vibrazioni su biciclette da corsa e da città. Giornale Degli Ignienisti Industriali, 34(3), 283–293. Retrieved from http://hdl.handle.net/11577/2487606eng
dc.relation.referencesPetrone, N., & Giubilatoa, F. (2013). Development of a test method for the comparative analysis of bicycle saddle vibration transmissibility. In 6th Asia-Pacific Congress on Sports Technology (APCST) (pp. 288–293). DOI: 10.1016/j.proeng.2013.07.063eng
dc.relation.referencesPollock, R. D., Woledge, R. C., Mills, K. R., Martin, F. C., & Newham, D. J. (2010). Muscle activity and acceleration during whole body vibration: Effect of frequency and amplitude. Clinical Biomechanics (Bristol, Avon), 25(8), 840–846. doi:10.1016/j.clinbiomech.2010.05.004eng
dc.relation.referencesRitzman, R., Gollhofer, A., & Kramer, A. (2013). The influence of vibration type, frecuency, body position and additional load on the neuromuscular activity during whole body vibration. European Journal of Applied Physiological, 113(1), 1–11. doi:10.1007/s00421-012-2402-0eng
dc.relation.referencesRosdahl, H., Gullstrand, L., Salier-Eriksson, J., Johansson, P., & Schantz, P. (2010). Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. European Journal of Applied Physiology, 109(2), 159–171. doi:10.1007/s00421-009-1326-9eng
dc.relation.referencesSamuelson, B., Jorfeldt, L., & Ahlborg, B. (1989). Influence of vibration on work performance during ergometer cycling. Upsala Journal of Medical Sciences, 94(1), 73–79. doi:10.3109/03009738909179249eng
dc.relation.referencesSchwellnus, M., & Derman, E. (2005). Common injuries in cycling: Prevention, diagnosis and management. SA Fam Pract, 47(7), 14–19. doi:10.1080/20786204.2005.10873255eng
dc.relation.referencesSperlich, B., & Kleinoeder, H. (2009). Physiological and perceptual responses of adding vibration to cycling. Journal of Exercise Physiology, 12(2), 40–46. Retrieved from https://www.asep.org/asep/asep/JEPonlineSperlichApril2009.doceng
dc.relation.referencesSrinivasan, J., & Balasubramanian, V. (2007). Low back pain and muscle fatigue due to road cycling—An sEMG study. Journal of Bodywork and Movement Therapies, 11(3), 260–266. doi:10.1016/j.jbmt.2006.08.009eng
dc.relation.referencesStegeman, D. F., & Hermens, H. J. (2007). Standards for surface electromyography: The european project “surface emg for non-invasive assessment of muscles (seniam). Retrieved from: https://www.med.uni-jena.de/motorik/pdf/stegeman.pdfeng
dc.relation.referencesTanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153–156. doi:10.1016/S0735-1097(00)01054-8eng
dc.relation.referencesWeiss, B. D. (1983). Nontraumatic injuries in amateur long distance bicyclists. The American Journal of Sports Medicine, 13(3), 187–192. doi:10.1177/036354658501300308eng
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.armarcCiclismo
dc.subject.armarcCarreras de bicicletas - Carreras (Deporte)
dc.subject.armarcOxígeno en el organismo
dc.subject.proposalPedallingeng
dc.subject.proposalaccelerationeng
dc.subject.proposaloxygen consumptioneng
dc.subject.proposaltransmissibilityeng
dc.subject.proposalEMGeng
dc.subject.proposalPedaleospa
dc.subject.proposalAceleraciónspa
dc.subject.proposalConsumo de oxigenospa
dc.subject.proposalTransmisibilidadspa
dc.subject.proposalEMGspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • AA. Gibiome [38]
    Clasificación: A - Convocatoria 2018

Mostrar el registro sencillo del ítem