Mostrar el registro sencillo del ítem

dc.contributor.authorMunera Ramirez, Marcela Cristina
dc.contributor.authorPionteck, Aymeric
dc.contributor.authorChiementin, Xavier
dc.contributor.authorMurer, Sébastien
dc.contributor.authorChadefaux, Delphine
dc.contributor.authorRao, Guillaume
dc.date.accessioned2021-06-14T00:27:29Z
dc.date.accessioned2021-10-01T17:16:54Z
dc.date.available2021-06-14T00:27:29Z
dc.date.available2021-10-01T17:16:54Z
dc.date.issued2017
dc.identifier.issn2076-3417
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1570
dc.description.abstractHuman lower limbs are exposed to vibrations on a daily basis, during work, transport or sports. However, most of the FE (Finite Elements) and OMA (Operational Modal Analysis) studies focus either on the whole body or on the hand-arm system. The study presented herein aims at identifying the modal parameters of the lower limbs using a 2D FE model updated using OMA. A numerical model is proposed, and a modal analysis has been performed on 11 subjects. Two repeatable modal frequencies were extracted: 52.54 ± 2.05 Hz and 118.94 ± 2.70 Hz, which were used to update the mechanical properties of the numerical model. The knowledge of these modal characteristics makes it possible to design new equipment that would absorb these specific vibrations and possibly reduce the risk of related diseases in the field of sports and transport.eng
dc.description.abstractLas extremidades inferiores del ser humano están expuestas a vibraciones a diario, durante el trabajo, el transporte o el deporte. Sin embargo, la mayoría de los estudios de EF (elementos finitos) y OMA (análisis modal operacional) se centran en el cuerpo entero o en el sistema mano-brazo. El estudio que aquí se presenta tiene como objetivo identificar los parámetros modales de las extremidades inferiores mediante un modelo de EF 2D actualizado con OMA. Se propone un modelo numérico y se ha realizado un análisis modal en 11 sujetos. Se extrajeron dos frecuencias modales repetibles 52,54 ± 2,05 Hz y 118,94 ± 2,70 Hz, que se utilizaron para actualizar las propiedades mecánicas del modelo numérico. El conocimiento de estas características modales permite diseñar nuevos equipos que absorban estas vibraciones específicas y posiblemente reduzcan el riesgo de enfermedades relacionadas en el ámbito del deporte y el transporte.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDPI Multidisciplinary Digital Publishing Institutespa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2076-3417/7/8/853spa
dc.titleFE Model and Operational Modal Analysis of Lower Limbseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGiBiomespa
dc.identifier.doi10.3390/app7080853
dc.identifier.urlhttps://doi.org/10.3390/app7080853
dc.publisher.placeSwitzerlandspa
dc.relation.citationendpage865spa
dc.relation.citationstartpage853spa
dc.relation.citationvolume7spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalApplied Scienceseng
dc.relation.referencesGómez-Cabello, A.; González-Agüero, A.; Morales, S.; Ara, I.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people. J. Sci. Med. Sport 2014, 17, 160–164.eng
dc.relation.referencesMadou, K.H.; Cronin, J.B. The Effects of Whole Body Vibration on Physical and Physiological Capability in Special Populations. Hong Kong Physiother. J. 2008, 26, 24–38.eng
dc.relation.referencesMatute-Llorente, Á.; González-Agüero, A.; Gómez-Cabello, A.; Vicente-Rodríguez, G.; Casajús Mallén, J.A. Effect of Whole-Body Vibration Therapy on Health-Related Physical Fitness in Children and Adolescents With Disabilities: A Systematic Review. J. Adolesc. Health 2014, 54, 385–396.eng
dc.relation.referencesCarlsöö, S. The effect of vibration on the skeleton, joints and muscles. A review of the literature. Appl. Ergon. 1982, 13, 251–258.eng
dc.relation.referencesWang, Y.J.; Huang, X.L.; Yan, J.W.; Wan, Y.N.; Wang, B.X.; Tao, J.H.; Chen, B.; Li, B.Z.; Yang, G.J.; Wang, J. The association between vibration and vascular injury in rheumatic diseases: A review of the literature. Autoimmunity 2015, 48, 61–68.eng
dc.relation.referencesJordan, M.J.; Norris, S.R.; Smith, D.J.; Herzog, W. Vibration Training: An Overview of the Area, Training Consequences, and Future Considerations. J. Strength Cond. Res. 2005, 19, 459.eng
dc.relation.referencesGurram, R. A Study of Vibration Response Characteristics of the Human Hand-Arm System. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 1993.eng
dc.relation.referencesMunera, M.; Chiementin, X.; Crequy, S.; Bertucci, W. Physical risk associated with vibration at cycling. Mech. Ind. 2014, 15, 535–540.eng
dc.relation.referencesFridén, J. Vibration damage to the hand: Clinical presentation, prognosis and length and severity of vibration required. J. Hand Surg. 2001, 26, 471–474.eng
dc.relation.referencesAyari, H.; Thomas, M.; Doré, S.; Serrus, O. Evaluation of lumbar vertebra injury risk to the seated human body when exposed to vertical vibration. J. Sound Vib. 2009, 321, 454–470.eng
dc.relation.referencesGrassi, L.; Väänänen, S.; Ristinmaa, M.; Jurvelin, J.S.; Isaksson, H. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J. Biomech. 2016, 49, 802–806.eng
dc.relation.referencesAdewusi, S.; Thomas, M.; Vu, V.; Li, W. Modal parameters of the human hand-arm using finite element and operational modal analysis. Mech. Ind. 2014, 15, 541–549.eng
dc.relation.referencesHostens, I.; Ramon, H. Descriptive analysis of combine cabin vibrations and their effect on the human body. J. Sound Vib. 2003, 266, 453–464.eng
dc.relation.referencesKitazaki, S.; Griffin, M.J. Resonance behaviour of the seated human body and effects of posture. J. Biomech. 1998, 31, 143–149.eng
dc.relation.referencesHobatho, M.C.; Darmana, R.; Pastor, P.; Barrau, J.J.; Laroze, S.; Morucci, J.P. Development of a three-dimensional finite element model of a human tibia using experimental modal analysis. J. Biomech. 1991, 24, 371–383.eng
dc.relation.referencesMunera, M.; Chiementin, X.; Murer, S.; Bertucci, W. Model of the risk assessment of hand-arm system vibrations in cycling: Case of cobblestone road. Proc. Inst. Mech. Eng. Part P 2015, 229, 231–238.eng
dc.relation.referencesThuong, O.; Griffin, M.J. The vibration discomfort of standing persons: 0.5–16 Hz fore-and-aft, lateral, and vertical vibration. J. Sound Vib. 2011, 330, 816–826.eng
dc.relation.referencesWakeling, J.M.; Liphardt, A.M.; Nigg, B.M. Muscle activity reduces soft-tissue resonance at heel-strike during walking. J. Biomech. 2003, 36, 1761–1769eng
dc.relation.referencesLafortune, M.A.; Lake, M.J.; Hennig, E.M. Differential shock transmission response of the human body to impact severity and lower limb posture. J. Biomech. 1996, 29, 1531–1537.eng
dc.relation.referencesPeeters, B.; Van Der Auweraer, H. Polymax: A revolution in operational modal analysis. In Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 26–27 April 2005.eng
dc.relation.referencesVan der Auweraer, H.; Guillaume, P.; Verboven, P.; Vanlanduit, S. Application of a Fast-Stabilizing Frequency Domain Parameter Estimation Method. J. Dyn. Syst. Meas. Control 2001, 123, 651.eng
dc.relation.referencesHeylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; Katholieke Universiteit Leuven, Faculty of Engineering, Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation: Leuven, Belgium, 1998eng
dc.relation.referencesAfnor. ISO 2631-1:1997—Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements; ISO: Geneva, Switzerland, 1997.eng
dc.relation.referencesBeillas, P.; Papaioannou, G.; Tashman, S.; Yang, K. A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J. Biomech. 2004, 37, 1019–1030.eng
dc.relation.referencesDe Mendonça, M.C. Estimation of height from the length of long bones in a Portuguese adult population. Am. J. Phys. Anthropol. 2000, 112, 39–48.eng
dc.relation.referencesAtilla, B.; Oznur, A.; Ca ˘glar, O.; Tokgözo ˘glu, M.; Alpaslan, M. Osteometry of the femora in Turkish individuals: A morphometric study in 114 cadaveric femora as an anatomic basis of femoral component design. Acta Orthop. Traumatol. Turc. 2007, 41, 64–68.eng
dc.relation.referencesBeauthier, J.; Mangin, P.; Hédouin, V. Traité de Médecine Légale; De Boeck: Bruxelles, Belgique, 2011eng
dc.relation.referencesSchmidt, W.; Reyes, M.; Fischer, F.; Geesink, R.; Nolte, L.; Racanelli, J.; Reimers, N. Quantifying human knee anthropometric differences between ethnic groups and gender using shape analysis techniques. In Proceedings of the Annual Meeting American Society of Biomechanics, State College, PA, USA, 26–29 August 2009.eng
dc.relation.referencesNASA. Volume I: Man-Systems Integration Standards (MSIS); Chapter Anthropometry and Biomechanics; NASA: Washington, DC, USA, 1995.eng
dc.relation.referencesGiladi, M.; Milgrom, C.; Simkin, A.; Stein, M.; Kashtan, H.; Margulies, J.; Rand, N.; Chisin, R.; Steinberg, R.; Aharonson, Z. Stress fractures and tibial bone width. A risk factor. J. Bone Jt. Surg. Br. Vol. 1987, 69, 326–329eng
dc.relation.referencesRadzi, S.; Uesugi, M.; Baird, A.; Mishra, S.; Schuetz, M.; Schmutz, B. Assessing the bilateral geometrical differences of the tibia—Are they the same? Med. Eng. Phys. 2014, 36, 1618–1625.eng
dc.relation.referencesOzden, H.; Balci, Y.; Demirüstü, C.; Turgut, A.; Ertugrul, M. Stature and sex estimate using foot and shoe dimensions. Forensic Sci. Int. 2005, 147, 181–184.eng
dc.relation.referencesKanaani, J.; Mortazavi, S.B.; Khavanin, A.; Mirzai, R.; Rasulzadeh, Y.; Mansurizadeh, M. Foot Anthropometry of 18–25 Years Old Iranian Male Students. Asian J. Sci. Res. 2010, 3, 62–69.eng
dc.relation.referencesPionteck, A.; Munera, M.; Chiementin, X. Modélisation 2D des Membres Inférieurs et Comportement Modale Face aux Paramètres Biomécaniques; 22ème Congrès Français de Mécanique, Lyon, France (FR); AFM, Association Française de Mécanique: Courbevoie, France, 2015eng
dc.relation.referencesCornelissen, P.; Cornelissen, M.; Van der Perre, G.; Christensen, A.B.; Ammitzbøll, F.; Dyrbye, C. Assessment of tibial stiffness by vibration testing in situ–II. Influence of soft tissues, joints and fibula. J. Biomech. 1986, 19, 551–561.eng
dc.relation.referencesDumas, R.; Camomilla, V.; Bonci, T.; Cheze, L.; Cappozzo, A. Generalized mathematical representation of the soft tissue artefact. J. Biomech. 2014, 47, 476–481.eng
dc.relation.referencesMunera, M.; Bertucci, W.; Duc, S.; Chiementin, X. Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomech. 2016, 15, 409–428.eng
dc.relation.referencesKiiski, J.; Heinonen, A.; Järvinen, T.L.; Kannus, P.; Sievänen, H. Transmission of Vertical Whole Body Vibration to the Human Body. J. Bone Miner. Res. 2008, 23, 1318–1325.eng
dc.relation.referencesVan der Perre, G.; Cornelissen, P. On the mechanical resonances of a human tibia in vitro. J. Biomech. 1983, 16, 549–552.eng
dc.relation.referencesTaylor, W.R.; Roland, E.; Ploeg, H.; Hertig, D.; Klabunde, R.; Warner, M.D.; Hobatho, M.C.; Rakotomanana, L.; Clift, S.E. Determination of orthotropic bone elastic constants using FEA and modal analysis. J. Biomech. 2002, 35, 767–773.eng
dc.relation.referencesKumar, A.; Jaiswal, H.; Garg, T.; Patil, P.P. Free Vibration Modes Analysis of Femur Bone Fracture Using Varying Boundary Conditions based on FEA. Procedia Mater. Sci. 2014, 6, 1593–1599.eng
dc.relation.referencesGupta, A.; Ming Tse, K. Finite Element Analysis on Vibration Modes of Femur Bone. In Proceedings of the International Conference on Advances in Mechanical Engineering, NCR-Delhi Region, India, December 2013.eng
dc.relation.referencesTsuchikane, A.; Nakatsuchi, Y.; Nomura, A. The influence of joints and soft tissue on the natural frequency of the human tibia using the impulse response method. Proc. Inst. Mech. Eng. Part H 1995, 209, 149–155.eng
dc.relation.referencesTseng, J.G.; Huang, B.W.; Liang, S.H.; Yen, K.T.; Tsai, Y.C.; Tseng, J.G. Normal Mode Analysis of a Human Fibula. Life Sci. J. 2014, 11, 711-718.eng
dc.relation.referencesKassab, G.; Sacks, M. Structure-Based Mechanics of Tissues and Organs; Springer: New York, NY, USA, 2016.eng
dc.relation.referencesGruber, A.H.; Boyer, K.A.; Derrick, T.R.; Hamill, J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J. Sport Health Sci. 2014, 3, 113–121eng
dc.relation.referencesTaiar, R.; Chiementin, X. Ergonomics and biomechanics on the impact of mats on decreasing whole body vibration. In Proceedings of the 8th International Conference on Applied Human Factors and Ergonomics, Los Angeles, CA, USA, 7–17 July 2017.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.armarcMétodo de elementos finitos - Análisis numérico
dc.subject.armarcVibración
dc.subject.proposalOMAspa
dc.subject.proposalLower limbs;eng
dc.subject.proposalFinite element analysiseng
dc.subject.proposalOMAspa
dc.subject.proposalMiembros inferioresspa
dc.subject.proposalAnálisis de elementos finitosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • AA. Gibiome [38]
    Clasificación: A - Convocatoria 2018

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/