Mostrar el registro sencillo del ítem

dc.contributor.authorCifuentes, Carlos A.
dc.contributor.authorRodríguez, Camilo
dc.contributor.authorFrizera Neto, Anselmo
dc.contributor.authorBastos Filho, Teodiano Freire
dc.contributor.authorCarelli, Ricardo
dc.date.accessioned2021-06-15T21:27:56Z
dc.date.accessioned2021-10-01T17:16:52Z
dc.date.available2021-06-15T21:27:56Z
dc.date.available2021-10-01T17:16:52Z
dc.date.issued2016
dc.identifier.issn1932-8184
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1577
dc.description.abstractHuman mobility is affected by different types of pathologies and also decreases gradually with age. In this context, Smart Walkers may offer important benefits for human assisted-gait in rehabilitation and functional compensation scenarios. This paper proposes a new interaction strategy for human-walker cooperation. The presented strategy is based on the acquisition of human gait parameters by means of data fusion from inertial measurement units and a laser range finder. This paper includes the mathematical formulation of the controller, simulations, and practical experimentation of the interaction strategy, in order to show the performance of the control system, including the parameter detection methodology. In the experimental study, despite the continuous oscillation during the walking, the parameter estimation was suitable for assisted ambulation, showing an appropriate adaptive behavior with changes in human linear velocity. Finally, the controller keeps the walker continuously following in front of the human gait, and it is shown how the walker orientation follows the human orientation during the real experiments.spa
dc.description.abstractLa movilidad humana se ve afectada por diferentes tipos de patologías y también disminuye paulatinamente con la edad. En este contexto, los Smart Walkers pueden ofrecer importantes beneficios para la marcha asistida por humanos en escenarios de rehabilitación y compensación funcional. Este artículo propone una nueva estrategia de interacción para la cooperación entre humanos y caminantes. La estrategia presentada se basa en la adquisición de parámetros de la marcha humana mediante la fusión de datos de unidades de medición inerciales y un telémetro láser. Este trabajo incluye la formulación matemática del controlador, simulaciones y experimentación práctica de la estrategia de interacción, con el fin de mostrar el desempeño del sistema de control, incluyendo la metodología de detección de parámetros. En el estudio experimental, a pesar de la continua oscilación durante la marcha, la estimación del parámetro fue adecuada para la deambulación asistida, mostrando un comportamiento adaptativo apropiado con cambios en la velocidad lineal humana. Finalmente, el controlador mantiene al caminante siguiendo continuamente el paso del ser humano, y se muestra cómo la orientación del caminante sigue la orientación humana durante los experimentos reales.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInstitute of Electrical and Electronics Engineers Inc.spa
dc.sourcehttps://ieeexplore.ieee.org/document/6818390/authors#authorsspa
dc.titleMultimodal Human–Robot Interaction for Walker-Assisted Gaitspa
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGiBiomespa
dc.identifier.doi10.1109/JSYST.2014.2318698
dc.identifier.urlhttps://doi.org/10.1109/JSYST.2014.2318698
dc.publisher.placeEstados Unidosspa
dc.relation.citationeditionIEEE Systems Journal ( Volumen: 10 , Número: 3 , septiembre de 2016.spa
dc.relation.citationendpage11spa
dc.relation.citationissue3spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume10spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalIEEE Systemsspa
dc.relation.referencesService Robot Statistics, Oct. 2013.spa
dc.relation.referencesL. Bueno, F. Brunetti, A. Frizera and J. L. Pons, "Human–robot cognitive interaction" in Wearable Robots: Biomechatronic Exoskeletons, Wiley, vol. 1, pp. 87-126, 2008.spa
dc.relation.referencesA. Frizera-Neto, R. Ceres, E. Rocon and J. L. Pons, "Empowering and assisting natural human mobility: The Simbiosis Walker", Intl. J. Adv. Robot. Syst., vol. 8, no. 3, pp. 34-50, 2011.spa
dc.relation.referencesM. M. Martins, C. P. Santos, A. Frizera-Neto and R. Ceres, "Assistive mobility devices focusing on Smart Walkers: Classification and review", Robot. Autonom. Syst., vol. 60, no. 4, pp. 548-562, Apr. 2012.spa
dc.relation.referencesG. Lee, T. Ohnuma and N. Y. Chong, "Design and control of JAIST active robotic walker", Intell. Serv. Robot., vol. 3, no. 3, pp. 125-135, Jul. 2010.spa
dc.relation.referencesG. Lacey and S. MacNamara, "User involvement in the design and evaluation of a smart mobility aid", J. Rehab. Res. Develop., vol. 37, no. 6, pp. 709-723, Nov./Dec. 2000.spa
dc.relation.referencesA. J. Rentschler, R. A. Cooper, B. Blasch and M. L. Boninger, "Intelligent walkers for the elderly: Performance and safety testing of VA-PAMAID robotic walker", J. Rehab. Res. Develop., vol. 40, no. 5, pp. 423-432, Sep./Oct. 2003.spa
dc.relation.referencesH. Hashimoto, A. Sasaki, Y. Ohyama and C. Ishii, "Walker with hand haptic interface for spatial recognition", Proc. 9th IEEE Intl. Workshop Adv. Motion Control, pp. 311-316, 2006.spa
dc.relation.referencesB. Graf, M. Hans and R. D. Schraft, "Care-O-bot II-development of a next generation robotic home assistant", Autonom. Robots, vol. 16, no. 2, pp. 193-205, Mar. 2004.spa
dc.relation.referencesG. Lacey and D. Rodriguez-Losada, "The evolution of Guido", IEEE Robotics Autom. Mag., vol. 15, no. 4, pp. 75-83, Dec. 2008.spa
dc.relation.referencesK. T. Yu et al., "An interactive robotic walker for assisting elderly mobility in senior care unit", Proc. IEEE Workshop Adv. Robotics Social Impacts, pp. 24-29, 2010.spa
dc.relation.referencesM. F. Chang, W. H. Mou, C. K. Liao and L. C. Fu, "Design and implementation of an active robotic walker for Parkinson's patients", Proc. SICE Annu. Conf., pp. 2068-2073, 2012.spa
dc.relation.referencesM. Martins, C. Santos and A. Frizera, "Online control of a mobility assistance Smart Walker", Proc. 2nd Portuguese Meet. Bioeng., pp. 1-6, 2012.spa
dc.relation.referencesO. Chuy, Y. Hirata, W. Zhidong and K. Kosuge, "Motion control algorithms for a new intelligent robotic walker in emulating ambulatory device function", Proc. IEEE Intl. Conf. Mechatron. Autom., pp. 1509-1514, 2005.spa
dc.relation.referencesG. Lee, E. J. Jung, T. Ohnuma, N. Y. Chong and B. J. Yi, "JAIST Robotic Walker control based on a two-layered Kalman filter", Proc. IEEE Int. Conf. Robotics Autom., pp. 3682-3687, 2011.spa
dc.relation.referencesT. Ohnuma, G. Lee and N. Y. Chong, "Particle filter based feedback control of JAIST Active Robotic Walker", Proc. 20th IEEE Intl. Symp. Robot Human Interactive Commun., pp. 264-269, 2011.spa
dc.relation.referencesC. L. Vaughan, B. L. Davis and J. C. O'Connor, Dynamics of Human Gait, Cape Town, South Africa:Kiboho Publishers, 1999.spa
dc.relation.referencesJ. Perry and J. Burnfield, Gait Analysis: Normal and Pathological Function, Thorofare, NJ, USA:Slack Incorporated, 1992.spa
dc.relation.referencesM. W. Whittle, Gait Analysis: An Introduction, Oxford, U.K.:Butterworth-Heinemann Elsevier, 2007.spa
dc.relation.referencesM. W. Whittle and D. Levine, "Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait", Hum. Movement Sci., vol. 18, no. 5, pp. 681-692, Oct. 1999.spa
dc.relation.referencesLaser Range Finder URG04LX Specifications, Oct. 2013.spa
dc.relation.referencesC. Cifuentes et al., "Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics", Proc. 4th IEEE RAS EMBS Intl. Conf. Biomed. Robot. Biomechatron., pp. 1989-1994, 2012.spa
dc.relation.referencesT. Pallejà, M. Teixidó, M. Tresanchez and J. Palacín, "Measuring gait using a ground laser range sensor", Sensors, vol. 9, no. 11, pp. 9133-9146, Nov. 2009.spa
dc.relation.referencesN. Bellotto and H. Hu, "Multisensor-based human detection and tracking for mobile service robots", IEEE Trans. Systems Man Cybernetics, vol. 39, no. 1, pp. 167-181, Feb. 2009.spa
dc.relation.referencesB. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, NJ, USA:Prentice-Hall, 1985.spa
dc.relation.referencesC. N. Riviere and N. V. Thakor, "Modeling and canceling tremor in human-machine interfaces", IEEE Eng. Med. Biol., vol. 15, no. 3, pp. 29-36, May/Jun. 1996.spa
dc.relation.referencesA. Frizera, A. Elias, A. J. del-Ama, R. Ceres and T. F. Bastos, "Characterization of spatio-temporal parameters of human gait assisted by a robotic walker", Proc. 4th IEEE RAS EMBS Intl. Conf. Biomed. Robot. Biomechatron., pp. 1087-1091, 2012.spa
dc.relation.referencesA. Frizera-Neto, J. A. Gallego, E. Rocon, J. L Pons and R. Ceres, "Extraction of user's navigation commands from upper body force interaction in walker assisted gait", BioMed. Eng. OnLine, vol. 9, pp. 37, 2010.spa
dc.relation.referencesA. Frizera, C. A. Cifuentes and T. Bastos, "Motion capture system based on the integration of 3D accelerometer in a wireless inertial measurement unit" in Accelerometers Principles Structure and Applications, New York, NY, USA:Nova Science Publishers Inc., vol. 1, pp. 57-77, 2013.spa
dc.relation.referencesJ. Fang, H. Sun, J. Cao, X. Zhang and Y. Tao, "A novel calibration method of magnetic compass based on ellipsoid fitting", IEEE Trans. Instrum. Meas., vol. 60, no. 6, pp. 2053-2061, Jun. 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.armarcRobótica médica
dc.subject.armarcRobots Moviles
dc.subject.armarcTecnología médicaspa
dc.subject.armarcMedical technologyeng
dc.subject.proposalInteracción humano-robotspa
dc.subject.proposalSensor de unidades de medida inercial (IMU)spa
dc.subject.proposalTelémetro láser (LRF)spa
dc.subject.proposalInterfaz multimodalspa
dc.subject.proposalMarcha asistida por andadorspa
dc.subject.proposalInertial Measurement Unit (IMU) Sensorspa
dc.subject.proposalHuman-robot interactionspa
dc.subject.proposalMultimodal interfacespa
dc.subject.proposalLaser Range Finder (LRF)spa
dc.subject.proposalWalker-assisted gaitspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • AA. Gibiome [38]
    Clasificación: A - Convocatoria 2018

Mostrar el registro sencillo del ítem