Mostrar el registro sencillo del ítem

dc.contributor.advisorSarmiento Rojas, Jefferson
dc.contributor.advisorQuevedo Silva, Rodrigo
dc.contributor.authorTello Urrea, Andrés Felipe
dc.date.accessioned2022-01-25T02:48:25Z
dc.date.available2022-01-25T02:48:25Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1963
dc.descriptionTrabajo de grado: Estado del arte de señales fisiológicas aplicadas en el control de sillas de ruedas inteligentesspa
dc.description.abstractIntroducción: Un 1 % de la población mundial requiere del uso de sillas de ruedas, las cuales usualmente no están adecuadamente diseñadas para sus necesidades. Dentro de esta población, aquellas personas que no poseen la capacidad de mover sus extremidades inferiores e incluso que han perdido la movilidad adecuada del cuello (e.g. etapas tardías de la esclerosis lateral amiotrófica) poseen un nivel de autonomía muy limitado. Objetivo: El objetivo de este estado del arte es establecer los métodos de adquisición, procesamiento, filtrado, extracción de características y modelos usados en señales fisiológicas empleadas para la generación de órdenes en una silla de ruedas inteligente. Por medio de este, se busca establecer el modelado de las respectivas señales que permitan ayudar a una mayor cantidad de población en condición de discapacidad a mejorar su calidad de vida. Metodología: El estado del arte se desarrolló con base en el formato PICO, por medio de este se definió la población objetivo, interacción, enfoque del análisis y lo que conforma los resultados. Con este propósito, una primera búsqueda que permitiera observar cuales son las señales fisiológicas más adecuadas para la caracterización y solución del objetivo fue realizada. Posterior a la identificación de dichas señales, se procedió a establecer el estado del arte de estas en la generación de órdenes para sillas de ruedas. La aplicación de estas señales en otros dispositivos de interfaz humanomaquina fue incluida de ser necesaria. Resultados: Por medio de la primera búsqueda cinco artículos de revisión permitieron establecer las señales de electroencefalografia y electrooculografia como las más usadas, así como aquellas con que una mayor cantidad de población podría generar señales de control para una silla de ruedas. Basado en estas señales, de la segunda búsqueda veinte artículos fueron incluidos, con base en ellos se obtuvo ocho artículos que implementan SSVEP, cuatro de MI, uno de P300, tres Hibridos (combina EEG con EOG), dos de EOG y dos que implementan otro tipo de modelo basado en estas señales. Los métodos de adquisición, procesamiento, filtrado, extracción de características y modelos usados fueron comparados y complementados con implementaciones pertinentes observadas en otros tipos de dispositivos IHM. Conclusiones: En este estado del arte se observaron diferentes paradigmas implementados para la generación de órdenes en sillas de ruedas, dependiendo del paradigma el modelado de la señal varia. No obstante, se puede concluir que modelos basados en redes neuronales con el paradigma de MI es la opción que más se acopla a un mayor número de la población, esto en el contexto de EEG. Por otro lado, las señales de EOG se basan en modelos más sencillos de umbralización. La combinación de estas dos señales para la generación de órdenes en sillas de ruedas posee un amplio campo por investigar dentro de esta problemática. A pesar de que los métodos de SSVEP posee buenos resultados, se llegó a la conclusión de que el uso de pantallas que desvíen la vista del usuario debe ser evitado en lo posible.spa
dc.description.abstractIntroduction: 1% of the world population requires the use of wheelchairs, which are usually not adequately designed for their needs. Within this population, those people who do not have the ability to move their lower limbs and even who have lost adequate neck mobility (e.g. late stages of amyotrophic lateral sclerosis) have a very limited level of autonomy. Objective: The objective of this state of the art is to establish the methods of acquisition, processing, filtering, extraction of characteristics and models used in physiological signals used for the generation of orders in an intelligent wheelchair. Through this, it is sought to establish the modeling of the respective signals that allow helping a greater number of the population with disabilities to improve their quality of life. Methodology: The state of the art was developed based on the PICO format, through which the target population, interaction, analysis approach and what makes up the results were defined. With this purpose, a first search that would allow observing which are the most adequate physiological signals for the characterization and solution of the objective was carried out. After the identification of these signals, the state of the art of these in the generation of orders for wheelchairs was established. The application of these signals in other human-machine interface devices was included if necessary. Results: Through the first search, five review articles allowed us to establish the electroencephalography and electrooculography signals as the most used, as well as those with which a greater number of the population could generate control signals for a wheelchair. Based on these signals, from the second search twenty articles were included, based on them eight articles were obtained that implement SSVEP, four from MI, one from P300, three Hybrids (combines EEG with EOG), two from EOG and two that implement another type of model based on these signals. The methods of acquisition, processing, filtering, feature extraction and models used were compared and complemented with relevant implementations observed in other types of HMI devices. Conclusions: In this state of the art, different paradigms implemented for the generation of orders in wheelchairs were observed, depending on the paradigm, the modeling of the signal varies. However, it can be concluded that models based on neural networks with the MI paradigm is the option that best suits a larger number of the population, this in the context of EEG. On the other hand, EOG signals are based on simpler thresholding models. The combination of these two signals for the generation of orders in wheelchairs has a wide field to investigate within this problem. Although the SSVEP methods have good results, it was concluded that the use of screens that divert the user's view should be avoided as much as possible.eng
dc.format.extent37 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsDerechos Reservados - Autorspa
dc.titleEstado del arte de señales fisiológicas aplicadas en el control de sillas de ruedasspa
dc.typeTrabajo de grado - Pregradospa
dcterms.audienceValidadoresspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.awardtitleEstado del arte de señales fisiológicas aplicadas en el control de sillas de ruedas inteligentesspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Biomédico(a)spa
dc.identifier.urlhttps://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=22860
dc.publisher.facultyCiencias de la saludspa
dc.publisher.programIngeniería Biomédicaspa
dc.relation.indexedN/Aspa
dc.relation.references[1] Rotatecno, “Nosotros,” 2020. [Online]. Available: https://www.rotatecno.com/ nosotros/ [2] ——, “CHILE OBTIENE LA REPRESENTACIÓN DE ROBOONE LATINOAMÉRICA.” [Online]. Available: https://www.rotatecno.com/ chileobtienelarepresentacionderoboonelatinoamerica/ [3] Robotics Lab SCL, “Nosotros,” 2021. [Online]. Available: https://www.roboticslab.cl/ nosotros/ [4] O. H. Arruti, “MIVOS, traductor para sordomudos,” 2020. [Online]. Available: https://p.dw.com/p/2sQFa [5] Sputnik, “Over Mind: cómo manejar una silla de ruedas con el pensamiento,” 2019. [Online]. Available: https://mundo.sputniknews.com/20190913/ overmindcomomanejarunasilladeruedasconelpensamiento1088681558. html [6] W. H. Organization, “World Report on Disability,” 2011. [Online]. Available: https://www.who.int/teams/noncommunicablediseases/ sensoryfunctionsdisabilityandrehabilitation/ worldreportondisability [7] “Sala situacional de las Personas con Discapacidad,” 2019. [Online]. Available: https://www.who.int/teams/noncommunicablediseases/ sensoryfunctionsdisabilityandrehabilitation/ worldreportondisability [8] World Health Organization, “Spinal cord injury,” 2013. [Online]. Available: https: //www.who.int/newsroom/ factsheets/ detail/spinalcordinjury [9] A. HueteGarcía, C. Santamaría, I. Astorga, C. Ma, M. Márquez, A. SuárezAlemán, S. Martinez, J. M. Murguia, B. Rejas, S. Winters et al., “Autonomía e inclusión de las personas con discapacidad en el ámbito de protección social,” Resumen de políticas del BID. Banco Interamericano de Desarrollo, 2019. [10] Q. Huang, S. He, Q. Wang, Z. Gu, N. Peng, K. Li, Y. Zhang, M. Shao, and Y. Li, “An eogbased human–machine interface for wheelchair control,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 2023–2032, 2017. [11] H. Wang, F. Yan, T. Xu, H. Yin, P. Chen, H. Yue, C. Chen, H. Zhang, L. Xu, Y. He et al., “Braincontrolled wheelchair review: From wet electrode to dry electrode, from single modal to hybrid modal, from synchronous to asynchronous,” IEEE Access, vol. 9, pp. 55 920–55 938, 2021. [12] A. Kaur, “Wheelchair control for disabled patients using emg/eog based human machine interface: a review,” Journal of Medical Engineering & Technology, vol. 45, no. 1, pp. 61–74, 2021. [13] R. B. Navarro, L. B. Vázquez, and E. L. Guillén, “Eogbased wheelchair control,” Smart Wheelchairs and BrainComputer Interfaces, pp. 381–403, 2018. [14] K. H. Kumar, A. Garg, N. A. Chandra, S. Singh, and R. Datta, “Voice and endocrinology,” Indian journal of endocrinology and metabolism, vol. 20, no. 5, p. 590, 2016. [15] J. S. Sobolewski, “Data transmission media,” 2003. [16] DOE U.S. Deparment of energy., “Technology Readiness Asessment Guide, US Department of energy,” 2011. [Online]. Available: https://www.directives.doe.gov/ directivesdocuments/ 400series/ 0413.3EGuide04a/@@ images/file [17] G. H. Guyatt, A. D. Oxman, R. Kunz, D. Atkins, J. Brozek, G. Vist, P. Alderson, P. Glasziou, Y. FalckYtter, and H. J. Schünemann, “Grade guidelines: 2. framing the question and deciding on important outcomes,” Journal of clinical epidemiology, vol. 64, no. 4, pp. 395–400, 2011. [18] J. D. M. Díaz, V. O. Chacón, and F. J. M. Ronda, “El diseño de preguntas clínicas en la práctica basada en la evidencia. modelos de formulación,” Enfermería Global, vol. 15, no. 3, pp. 431–438, 2016. [19] V. Dal BelloHaas, A. D. Kloos, and H. Mitsumoto, “Physical therapy for a patient through six stages of amyotrophic lateral sclerosis,” Physical therapy, vol. 78, no. 12, pp. 1312–1324, 1998. [20] K. Li, S. Ramkumar, J. Thimmiaraja, and S. Diwakaran, “Optimized artificial neural network based performance analysis of wheelchair movement for als patients,” Artificial intelligence in medicine, vol. 102, p. 101754, 2020. [21] X. Zhang, L. Hui, L. Wei, F. Song, and F. Hu, “A bibliometric analysis of humanmachine interaction methodology for electricpowered wheelchairs driving from 1998 to 2020,” International journal of environmental research and public health, vol. 18, no. 14, p. 7567, 2021. [22] P. Georgieva, F. Silva, M. Milanova, and N. Kasabov, “Eeg signal processing for brain–computer interfaces,” in Springer Handbook of Bio/ Neuroinformatics. Springer, 2014, pp. 797–812. [23] Z. AlQaysi, B. Zaidan, A. Zaidan, and M. Suzani, “A review of disability eeg based wheelchair control system: Coherent taxonomy, open challenges and recommendations,” Computer methods and programs in biomedicine, vol. 164, pp. 221–237, 2018. [24] S. Ashok, “Highlevel handsfree control of wheelchair–a review,” Journal of medical engineering & technology, vol. 41, no. 1, pp. 46–64, 2017. [25] J. Leaman and H. M. La, “A comprehensive review of smart wheelchairs: past, present, and future,” IEEE Transactions on HumanMachine Systems, vol. 47, no. 4, pp. 486–499, 2017. [26] A. M. Choudhari, P. Porwal, V. Jonnalagedda, and F. Mériaudeau, “An electrooculography based human machine interface for wheelchair control,” Biocybernetics and Biomedical Engineering, vol. 39, no. 3, pp. 673–685, 2019. [27] X. Wang, Y. Xiao, F. Deng, Y. Chen, and H. Zhang, “Eyemovementcontrolled wheelchair based on flexible hydrogel biosensor and wtsvm,” Biosensors, vol. 11, no. 6, p. 198, 2021. [28] A. Cruz, G. Pires, A. Lopes, C. Carona, and U. J. Nunes, “A selfpaced bci with a collaborative controller for highly reliable wheelchair driving: Experimental tests 33 with physically disabled individuals,” IEEE Transactions on HumanMachine Systems, vol. 51, no. 2, pp. 109–119, 2021. [29] L. J. Rothkrantz, R. Horlings, and D. Datcu, “Emotion recognition using brain activity,” Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing, CompSysTech’08, no. January, 2008. [30] R. Na, C. Hu, Y. Sun, S. Wang, S. Zhang, M. Han, W. Yin, J. Zhang, X. Chen, and D. Zheng, “An embedded lightweight ssvepbci electric wheelchair with hybrid stimulator,” Digital Signal Processing, vol. 116, p. 103101, 2021. [31] D. W.K. Ng and S. Y. Goh, “Indirect control of an autonomous wheelchair using ssvep bci,” Journal of Robotics and Mechatronics, vol. 32, no. 4, pp. 761–767, 2020. [32] F. Wang, Y. Liu, Y. Zhang, Y. Gao, L. Xiao, and C. Wu, “Research on the shared control technology for robotic wheelchairs based on topological map,” Industrial Robot: the international journal of robotics research and application, 2019. [33] M. Liu, K. Wang, X. Chen, J. Zhao, Y. Chen, H. Wang, J. Wang, and S. Xu, “Indoor simulated training environment for braincontrolled wheelchair based on steadystate visual evoked potentials,” Frontiers in neurorobotics, vol. 13, p. 101, 2020. [34] G. Nuo, Z. Wenwen, and L. Shouyin, “Asynchronous braincomputer interface intelligent wheelchair system based on alpha wave and ssvep eeg signals,” in 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP). IEEE, 2019, pp. 611–616. [35] X. Deng, Z. L. Yu, C. Lin, Z. Gu, and Y. Li, “A bayesian shared control approach for wheelchair robot with brain machine interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 1, pp. 328–338, 2019. [36] ——, “Selfadaptive shared control with brain state evaluation network for humanwheelchair cooperation,” Journal of neural engineering, vol. 17, no. 4, p. 045005, 2020. [37] H. Zhang, E. Dong, and L. Zhu, “Braincontrolled wheelchair system based on ssvep,” in 2020 Chinese Automation Congress (CAC). IEEE, 2020, pp. 2108–2112. [38] K. Banach, M. Małecki, M. Rosół, and A. Broniec, “Brain–computer interface for electric wheelchair based on alpha waves of eeg signal,” BioAlgorithms and MedSystems, vol. 17, no. 3, pp. 165–172, 2021. [39] S. P. Zavala, S. G. Yoo, and D. E. V. Tituana, “Controlling a wheelchair using a brain computer interface based on user controlled eye blinks,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, 2021. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2021.0120607 [40] S. K. Nataraj, M. Paulraj, S. B. Yaacob, and A. H. B. Adom, “Thoughtactuated wheelchair navigation with communication assistance using statistical crosscorrelationbased features and extreme learning machine,” Journal of medical signals and sensors, vol. 10, no. 4, p. 228, 2020. 34 [41] H. Zhou and G. Zhang, “Motor imagery eegbased control of intelligent wheelchair using deep belief network coupled with ovocsp algorithm,” in 2019 3rd International Conference on Data Science and Business Analytics (ICDSBA). IEEE, 2019, pp. 391–397. [42] F. Wang, Z. Xu, W. Zhang, S. Wu, Y. Zhang, and S. Coleman, “An adaptive control approach for intelligent wheelchair based on bci combining with qoo,” in 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8. [43] Q. Huang, Z. Zhang, T. Yu, S. He, and Y. Li, “An eeg/ eogbased hybrid braincomputer interface: application on controlling an integrated wheelchair robotic arm system,” Frontiers in neuroscience, vol. 13, p. 1243, 2019. [44] S. D. T. Olesen, R. Das, M. D. Olsson, M. A. Khan, and S. Puthusserypady, “Hybrid eegeogbased bci system for vehicle control,” in 2021 9th International Winter Conference on BrainComputer Interface (BCI). IEEE, 2021, pp. 1–6. [45] S. Narayana, R. V. Prasad, and K. Warmerdam, “Mind your thoughts: Bci using single eeg electrode,” IET CyberPhysical Systems: Theory & Applications, vol. 4, no. 2, pp. 164–172, 2019. [46] F. Sharbrough, “American electroencephalographic society guidelines for standard electrode position nomenclature,” J clin Neurophysiol, vol. 8, pp. 200–202, 1991. [47] R. Jenke, A. Peer, and M. Buss, “Feature extraction and selection for emotion recognition from eeg,” IEEE Transactions on Affective computing, vol. 5, no. 3, pp. 327–339, 2014. [48] A. Sakalle, P. Tomar, H. Bhardwaj, D. Acharya, and A. Bhardwaj, “A LSTM based deep learning network for recognizing emotions using wireless brainwave driven system,” Expert Systems with Applications, vol. 173, no. January, p. 114516, 2021. [Online]. Available: https://doi.org/10.1016/j.eswa.2020.114516 [49] C. Guger, B. Z. Allison, B. Großwindhager, R. Prückl, C. Hintermüller, C. Kapeller, M. Bruckner, G. Krausz, and G. Edlinger, “How many people could use an ssvep bci?” Frontiers in neuroscience, vol. 6, p. 169, 2012. [50] A. Materka and P. Poryzała, “A robust asynchronous ssvep braincomputer interface based on cluster analysis of canonical correlation coefficients,” in HumanComputer Systems Interaction: Backgrounds and Applications 3. Springer, 2014, pp. 3–14. [51] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.P. Jung, and S. Gao, “Highspeed spelling with a noninvasive brain–computer interface,” Proceedings of the national academy of sciences, vol. 112, no. 44, pp. E6058–E6067, 2015. [52] M. Nakanishi, Y. Wang, X. Chen, Y.T. Wang, X. Gao, and T.P. Jung, “Enhancing detection of ssveps for a highspeed brain speller using taskrelated component analysis,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 1, pp. 104–112, 2017. [53] C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, F. Gramatica, and G. Edlinger, “How many people are able to control a p300based brain–computer interface (bci)?” Neuroscience letters, vol. 462, no. 1, pp. 94–98, 2009. [54] G. Pires, U. Nunes, and M. CasteloBranco, “Statistical spatial filtering for a p300based bci: tests in ablebodied, and patients with cerebral palsy and amyotrophic lateral sclerosis,” Journal of neuroscience methods, vol. 195, no. 2, pp. 270–281, 2011. [55] I. Lazarou, S. Nikolopoulos, P. C. Petrantonakis, I. Kompatsiaris, and M. Tsolaki, “Eegbased brain–computer interfaces for communication and rehabilitation of people with motor impairment: a novel approach of the 21st century,” Frontiers in human neuroscience, vol. 12, p. 14, 2018. [56] R. Ortner, J. Scharinger, A. Lechner, and C. Guger, “How many people can control a motor imagery based bci using common spatial patterns?” in 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2015, pp. 202–205. [57] A. Géron, Handson machine learning with ScikitLearn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019. [58] A. Bulling, J. A. Ward, H. Gellersen, and G. Tröster, “Eye movement analysis for activity recognition using electrooculography,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 4, pp. 741–753, 2010. [59] A. López, F. Ferrero, M. Valledor, J. C. Campo, and O. Postolache, “A study on electrode placement in eog systems for medical applications,” in 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2016, pp. 1–5. [60] R. Anchan, A. Pillay, A. Kale, A. Bhadricha, and S. P. Ram, “Optimal bipolar lead placement in electrooculography (eog): A comparative study with an emphasis on prolonged blinks,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, 2020, pp. 1–7. [61] C.T. Lin, J.T. King, P. Bharadwaj, C.H. Chen, A. Gupta, W. Ding, and M. Prasad, “Eogbased eye movement classification and application on hci baseball game,” IEEE Access, vol. 7, pp. 96 166–96 176, 2019. [62] W.D. Chang, H.S. Cha, and C.H. Im, “Removing the interdependency between horizontal and vertical eyemovement components in electrooculograms,” Sensors, vol. 16, no. 2, p. 227, 2016. [63] J. Zhang, B. Wang, C. Zhang, and J. Hong, “Volitional and realtime control cursor based on eye movement decoding using a linear decoding model,” Computational intelligence and neuroscience, vol. 2016, 2016. [64] W.D. Chang, H.S. Cha, S. H. Kim, C.H. Im et al., “Development of an electrooculogrambased eyecomputer interface for communication of individuals with amyotrophic lateral sclerosis,” Journal of neuroengineering and rehabilitation, vol. 14, no. 1, pp. 1–13, 2017. [65] N. Barbara, T. A. Camilleri, and K. P. Camilleri, “A comparison of eog baseline drift mitigation techniques,” Biomedical Signal Processing and Control, vol. 57, p. 101738, 2020. [66] J. Heo, H. Yoon, and K. S. Park, “A novel wearable forehead eog measurement system for human computer interfaces,” Sensors, vol. 17, no. 7, p. 1485, 2017. 36 [67] N. Najkar, F. Razzazi, and H. Sameti, “A novel approach to hmmbased speech recognition systems using particle swarm optimization,” Mathematical and Computer Modelling, vol. 52, no. 1112, pp. 1910–1920, 2010. [68] C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith, “Recurrent neural network grammars,” arXiv preprint arXiv:1602.07776, 2016. [69] J. Lian, L. Bi, and W. Fei, “A novel eventrelated potentialbased brain–computer interface for continuously controlling dynamic systems,” IEEE Access, vol. 7, pp. 38 721–38 729, 2019. [70] H. Hinrichs, M. Scholz, A. K. Baum, J. W. Kam, R. T. Knight, and H.J. Heinze, “Comparison between a wireless dry electrode eeg system with a conventional wired wet electrode eeg system for clinical applications,” Scientific reports, vol. 10, no. 1, pp. 1–14, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.armarcTecnología Biomédica
dc.subject.armarcSeñales fisiológicas -- órdenes -- silla de ruedas inteligente
dc.subject.proposalTecnología Biomédicaspa
dc.subject.proposalBiomedical Technologyeng
dc.subject.proposalSeñales fisiológicas -- órdenes -- silla de ruedas inteligentespa
dc.subject.proposalPhysiological signals -- commands -- smart wheelchaireng
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem