Mostrar el registro sencillo del ítem

dc.contributor.authorCastellanos, German
dc.contributor.authorPaz Penagos, Hernán
dc.contributor.authorTeuta Gomez, Guillermo
dc.contributor.authorJoseph, Wout
dc.date.accessioned2023-03-02T21:40:20Z
dc.date.available2023-03-02T21:40:20Z
dc.date.issued2020
dc.identifier.issn1053-587Xspa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2222
dc.description.abstractThe 3.5GHz band is an optimal candidate for 5G networks due to its propagation characteristics and massive bandwidth. However, services like the Fixed Satellite Service (FSS) are using this band in several countries. Therefore, this paper presents a coexistence study of the Long Term Evolution - Advanced (LTE-A) and FSS services in the 3500-3700 MHz in Colombia. Simulations were done in realistic scenarios in the city of Bogota, Colombia. Preliminary results show that critical scenarios are the ones from the LTE eNodeB (eNB) and Users Equipment (UE) nodes to the FSS earth stations. The study includes the analysis of Guard Bands (GB) and arrival angles into the Protection Distances (PD). Results show that the PD is highly dependent on the angle of the interfering signal and the GB used. The PD for a cochannel interference in a suburban scenario is higher than 250km, in the worst-case scenario, and could be reduced down to 17.5 km if a 25 MHz GB is included and the angular difference of the interfering LTE-A signal is 42⁰. Moreover, our results show that the PD needed for interference from UE are 100 times less compared to the eNB ones.eng
dc.description.abstractLa banda de 3,5 GHz es una candidata óptima para las redes 5G por sus características de propagación y su enorme ancho de banda. Sin embargo, servicios como el Servicio Fijo por Satélite (SFS) están utilizando esta banda en varios países. Por lo tanto, este trabajo presenta un estudio de coexistencia de los servicios Long Term Evolution - Advanced (LTE-A) y FSS en los 3500-3700 MHz en Colombia. Se realizaron simulaciones en escenarios realistas en la ciudad de Bogotá, Colombia. Los resultados preliminares muestran que los escenarios críticos son los que van desde los nodos LTE eNodeB (eNB) y Users Equipment (UE) hasta las estaciones terrenas FSS. El estudio incluye el análisis de las Bandas de Guarda (GB) y los ángulos de llegada a las Distancias de Protección (PD). Los resultados muestran que la PD depende en gran medida del ángulo de la señal interferente y de la GB utilizada. La DP para una interferencia cocanal en un escenario suburbano es superior a 250 km, en el peor de los casos, y podría reducirse hasta 17,5 km si se incluye una GB de 25 MHz y la diferencia angular de la señal LTE-A interferente es del 42⁰. Además, nuestros resultados muestran que las PD necesarias para la interferencia de los UE son 100 veces menores que las de los eNB.spa
dc.format.extent7 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIEEE Transactions on Signal Processingspa
dc.sourcehttps://ieeexplore.ieee.org/document/9268784spa
dc.titleCoexistence for LTE-Advanced and FSS Services in the 3.5GHz Band in Colombiaeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupEcitrónicaspa
dc.identifier.doihttps://doi.org/10.1109/ASMS/SPSC48805.2020.9268784
dc.publisher.placeGraz, Austriaspa
dc.relation.citationendpage7spa
dc.relation.citationstartpage1spa
dc.relation.ispartofjournal2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC)eng
dc.relation.referencesITU, ‘Final Acts World Radio Conference 2015’, ITU, Geneva, 2015.spa
dc.relation.referencesGSMA, ‘Considerations for the 3.5 GHz IMT range: getting ready for use’. May-2017.spa
dc.relation.referencesL. F. Abdulrazak, ‘Coexistence of IMT-Advanced Systems for Spectrum Sharing with FSS Receivers in C-Band and Extended C-Band .’, in Coexistence of IMT-Advanced Systems for Spectrum Sharing with FSS Receivers in C-Band and Extended C-Band, L. F. Abdulrazak, Ed. Cham: Springer International Publishing, 2018, pp. 9–41.spa
dc.relation.referencesWeidong Wang, Fei Zhou, Wei Huang, Ben Wang, and Yinghai Zhang, ‘Coexistence studies between LTE system and earth station of fixed satellite service in the 3400–3600 MHz frequency bands in China’, in 2010 3rd IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), Beijing, China, 2010, pp. 1125–1130, doi: 10.1109/ICBNMT.2010.5705265.spa
dc.relation.referencesGSA, ‘The Future of IMT in the 3300-4200MHz Range.pdf’. Jun-2017.spa
dc.relation.referencesITU, ‘Rec ITU-R M.1036-6: Frequency arrangements for implementation of the terrestrial component of International Mobile Telecommunications in the bands identified for IMT in the Radio Regulations’, Geneva, Switzerland, Oct. 2019.spa
dc.relation.references3GPP, ‘3GPP TS 38.101-1: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (Release 15)’. Jun-2018.spa
dc.relation.referencesITU, Radio Regulation Articles - Edition 2016, 4 vols. Geneva, Switzerland, 2016.spa
dc.relation.referencesANE, ‘Cuadro Nacional de Atribución de Bandas de Frecuencias - 2018’, p. 389, 2018.spa
dc.relation.referencesITU, World Radiocommunication Conference 2019 (WRC-19) - Provisional Final Acts. Geneva, Switzerland, 2019.spa
dc.relation.referencesITU, ‘Rec ITU-R M.2012-4: Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-Advanced (IMT-Advanced)’, Nov. 2019.spa
dc.relation.referencesITU, ‘Rep ITU-R M.2292-0: Characteristics of terrestrial IMT-Advanced systems for frequency sharing/interference analyses.’, Dec. 2013.spa
dc.relation.referencesITU, ‘Rep ITU-R M.2109: Sharing studies between IMT-Advanced systems and geostationary satellite networks in the fixed-satellite service in the 3 400-4 200 and 4 500-4 800 MHz frequency bands’, 2007.spa
dc.relation.references]ITU, ‘ITU-R S.2150. An interference reduction technique by adaptivearray earth station antennas for sharing between the fixed-satellite service and fixed/mobile services. S Series – Fixed satellite service.’, ITU-R Radiocommunication Sector of ITU, 2009.spa
dc.relation.referencesITU, ‘Rep ITU-R S.2199: Studies on compatibility of broadband wireless access systems and fixed-satellite service networks in the 3 400-4 200 MHz band’, 2010.spa
dc.relation.referencesITU, ‘Rep ITU-R S.2368-0: Sharing studies between IMT-Advanced systems and geostationary satellite networks in the FSS in the 3 400-4 200 MHz and 4 500-4 800 MHz frequency bands’, 2010.spa
dc.relation.referencesANE, ‘Resolucion 0181 de 2019’, Apr. 2019.spa
dc.relation.referencesFCC, FCC 05-56. Report and Order. Washington D.C.: FCC, 2005.spa
dc.relation.referencesL. C. Fernandes and A. Linhares, ‘Coexistence conditions of LTEadvanced at 3400–3600 MHz with TVRO at 3625–4200 MHz in Brazil’, Wireless Networks, vol. 25, no. 1, pp. 105–115, Jan. 2017, doi: 10.1007/s11276-017-1544-8.spa
dc.relation.referencestalian Ministry of Economic Development and JCR, ‘Sharing analysis in a live LTE network in the 2.3-2.4 GHz band.’ 2016.spa
dc.relation.referencesW. Wang, F. Zhou, W. Huang, B. Wang, and Y. Zhang, ‘Coexistence studies between LTE system and earth station of fixed satellite service in the 3400-3600 MHz frequency bands in China.’ 2010.spa
dc.relation.referencesTransfinite systems, ‘Report for GSMA on the mitigations required for adjacent channel compatibility between IMT and ubiquitous FSS Earth Stations in the 3.4 – 3.8 GHz frequency band’, Aug. 2019.spa
dc.relation.referencesJ. Du, C. Jiang, H. Zhang, X. Wang, Y. Ren, and M. Debbah, ‘Secure Satellite-Terrestrial Transmission Over Incumbent Terrestrial Networks via Cooperative Beamforming’, IEEE Journal of Selected Areas in Communications, vol. 36, no. 7, pp. 1367–1382, 2018.spa
dc.relation.referencesF. Guidolin, M. Nekovee, L. Badia, and M. Zorzi, ‘A cooperative scheduling algorithm for the coexistence of fixed satellite services and 5G cellular network’, in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 1322–1327, doi: 10.1109/ICC.2015.7248506.spa
dc.relation.referencesF. Guidolin, M. Nekovee, L. Badia, and M. Zorzi, ‘A study on the coexistence of fixed satellite service and cellular networks in a mmWave scenario’, in 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 2444–2449, doi: 10.1109/ICC.2015.7248691.spa
dc.relation.referencesJ.-W. Lim, H.-S. Jo, H.-G. Yoon, and J.-G. Yook, ‘Interference mitigation technique for the sharing between IMT-advanced and fixed satellite service’, Journal of Communications and Networks, vol. 9, no. 2, pp. 159– 166, Jun. 2007, doi: 10.1109/JCN.2007.6182835.spa
dc.relation.referencesATDI, EV ICS telecom manual. Paris, FRANCE, 2017.spa
dc.relation.referencesITU, ‘Rec ITU-R P.452-16: Prediction procedure for the evaluation of interference between stations on the surface of the Earth at frequencies above about 0.1 GHz’, p. 59, Jul. 2015.spa
dc.relation.referencesITU, ‘Rec ITU-R P.2001-3: A general purpose wide-range terrestrial propagation model in the frequency range 30 MHz to 50 GHz’, Geneva, Switzerland, Aug. 2019.spa
dc.relation.referencesANE, ‘Resolucion 774 de 2018’:, Bogota, Colombia., Dec. 2018.spa
dc.relation.referencesEutelsat Américas, ‘Standard for the operation of satellite services.’, Coral Gables. FL. USA, Jun. 2006.spa
dc.relation.referencesMorello, A. and Reimers, U., ‘DVB-S2, the second-generation standard for satellite broadcasting and unicasting’, International Journal of Satellite Communications and Networking, vol. Vol. 22, no. No. 3, 2004.spa
dc.relation.referencesSES, Earth Station Performance Requirements. The Hague, THE NETHERLANDS, 2006.spa
dc.relation.referencesITU, ‘ITU-R S.465-6. Reference radiation pattern of earth station antennas in the fixed-satellite service for use in coordination and interference assessment in the frequency range from 2 to 31 GHz’, Geneva, Switzerland, Jan. 2010.spa
dc.relation.referencesITU, ‘Rec ITU-R S.1432-1: Apportionment of the allowable error performance degradations to FSS hypothetical reference digital paths arising from time invariant interference for systems operating below 30 GHz’. 2006.spa
dc.relation.referencesHCM program, ‘Harmonised Calculation Method (HCM) Agreement for some european countries.’, Bonn, Germany, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcRedes 5Gspa
dc.subject.armarc5G mobile communication systemseng
dc.subject.armarcSistemas de comunicación inalámbricaspa
dc.subject.armarcWireless communication systemseng
dc.subject.armarcTelefonía móvilspa
dc.subject.armarcCell phone systemseng
dc.subject.armarcSistema universal de telecomunicaciones móvilesspa
dc.subject.armarcUniversal Mobile Telecommunications Systemeng
dc.subject.proposalLTE-Advancedeng
dc.subject.proposalFSSeng
dc.subject.proposalInterferenceeng
dc.subject.proposalCoexistenceeng
dc.subject.proposalProtection distanceeng
dc.subject.proposalGuard bandeng
dc.subject.proposal3.5GHz bandeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem