Mostrar el registro sencillo del ítem

dc.contributor.authorGiraldo, Beatriz F.
dc.contributor.authorChaparro Preciado, Javier Alberto
dc.contributor.authorPere Camina, Salvador Benito
dc.date.accessioned2023-05-10T20:26:40Z
dc.date.available2023-05-10T20:26:40Z
dc.date.issued2013
dc.identifier.issn1557-170Xspa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2316
dc.description.abstractOne of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.eng
dc.description.abstractUno de los problemas más difíciles en cuidados intensivos sigue siendo el proceso de interrupción de la ventilación mecánica, denominado proceso de destete. Tanto un retraso innecesario en el proceso de interrupción como un ensayo de destete demasiado precoz son indeseables. En este estudio, analizamos la variabilidad del patrón respiratorio utilizando la señal de volumen respiratorio de pacientes sometidos a dos niveles diferentes de ventilación con presión de soporte (PSV), antes de la retirada de la ventilación mecánica. Para caracterizar el patrón respiratorio, se analizaron las siguientes series temporales: tiempo inspiratorio, tiempo espiratorio, duración de la respiración, volumen corriente, tiempo inspiratorio fraccional, flujo inspiratorio medio y respiración rápida superficial. Se consideraron varias técnicas de modelización autorregresiva: modelos autorregresivos (AR), modelos autorregresivos de medias móviles (ARMA) y modelos autorregresivos con entrada exógena (ARX). Se utilizaron los siguientes métodos de clasificación: regresión logística (LR), análisis discriminante lineal (LDA) y máquinas de vectores soporte (SVM). Se analizaron 20 pacientes en ensayos de destete de la ventilación mecánica. Los pacientes, sometidos a dos niveles diferentes de PSV, se clasificaron como PSV baja y PSV alta. Se analizó la variabilidad de los patrones respiratorios de estos pacientes. Se extrajeron los parámetros más relevantes utilizando los métodos clasificadores. Los mejores resultados se obtuvieron con el rango intercuartílico y los errores finales de predicción de los modelos AR, ARMA y ARX. Se obtuvo una precisión del 95% (93% de sensibilidad y 90% de especificidad) cuando el rango intercuartílico del tiempo espiratorio y las series temporales de duración de la respiración se utilizaron un modelo LDA. Todos los clasificadores mostraron un buen compromiso entre sensibilidad y especificidad.spa
dc.format.extent4 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://ieeexplore.ieee.org/document/6610384/keywords#keywordsspa
dc.titleCharacterization of the respiratory pattern variability of patients with different pressure support levelseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Ecitrónicaspa
dc.identifier.doihttps://doi.org/10.1109/EMBC.2013.6610384
dc.identifier.urlhttps://ieeexplore.ieee.org/document/6610384/keywords#full-text-header
dc.publisher.placeOsaka, Japanspa
dc.relation.citationendpage3852spa
dc.relation.citationstartpage3849spa
dc.relation.citationvolume1spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournal35th Annual International Conference of the IEEE EMBSeng
dc.relation.referencesM. J.F. and J. Kress, “Weaning patients from the ventilator,” The new england journal of medicine, vol. 367, pp. 2233–9, 2012.spa
dc.relation.referencesJ.-M. Boles, J. Bion, A. Connors, M. Herridge, B. Marsh, C. Melot, R. Pearl, H. Silverman, M. Stanchina, A. Vieillard-Baron, and T. Welte, “Weaning from mechanical ventilation,” Eur Respir J, vol. 29, no. 5, pp. 1033–1056, 2007.spa
dc.relation.referencesJ. P. Casaseca, M. Martin-Fernandez, and C. Alberola-Lopez, “Weaning from mechanical ventilation: a multimodal signal analysis,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 7, pp. 1330– 1345, July 2006.spa
dc.relation.referencesA. Kulkarni and V. Agarwal, “Extubation failure in intensive care unit: Predictors and management,” Indian J Crit Care Med, vol. 12, no. 1, pp. 1–9, 2008.spa
dc.relation.referencesJ.-C. Hsu, Y.-F. Chen, H.-H. Lin, C.-H. Li, and X. Jiang, “Construction of prediction module for successful ventilator weaning,” Lecture notes in computer science, no. 4570, pp. 766–775, 2007.spa
dc.relation.referencesJ. Durbin, “Efficient estimation of parameters in moving - average models,” Biometrika, vol. 46, no. 3 - 4, pp. 306–316, 1959.spa
dc.relation.referencesP. M. T. Broersen, “Modified durbin method for accurate estimation of moving-average models,” IEEE Transaction on Instrumentation and measurement, vol. 58, no. 5, pp. 1361–1369, 2009.spa
dc.relation.referencesP. Stoica, T. McKelvey, and J. Mari, “Ma estimation in polynomial time,” IEEE Trans. Signal Process., vol. 48, no. 7, p. 19992012, 2000.spa
dc.relation.referencesP. M. T. Broersen, “Finite sample criteria for autoregressive order selection,” IEEE Trans Signal Processing, vol. 48, no. 12, pp. 3550– 3558, 2000.spa
dc.relation.referencesB. F. Giraldo, J. Chaparro, D. Lpez-Rodrguez, D. Great, S. Benito, and P. Caminal, “Study of the respiratory pattern variability in patients during weaing trials,” Engineerring in Medicine and Biology Society, IEMBS, 2004.spa
dc.relation.referencesJ. A. Chaparro, B. F. Giraldo, P. Caminal, and S. Benito, “Analysis of the respiratory pattern variability of patients in weaning process using autoregressive modeling techniques,” Proc. IEEE Conf. Eng. Med. Biol., pp. 5690–5693, 2011.spa
dc.relation.referencesL. Ljung, “System identification: Theory for the user,” Prentice-Hall, Englewood Cliffs, New Jersey, 1987.spa
dc.relation.referencesS. Khorshidi and M. Karimi, “Modified aic and fpe criteria for autoregressive (ar) model order selection by using lsfb estimation method,” International Conference on Advances in Computational Tools for Engineering Applications, 2009.spa
dc.relation.referencesG. Box, G. Jenkins, and G. Reinsel, “Time series analysis, forescasting and control,” Third Edition, Prentice Hall International Inc., 1994.spa
dc.relation.referencesH.Tinsley and S. Brown, “Handbook of applied multivariate statistics and mathematical modeling,” Academic Press, 2000.spa
dc.relation.referencesR. Jhonson and D. Wicher, “Applied multivariate statistical analysis,” Quinta Edicin, Editorial Prentice Hall Hispanoamericana., 2006.spa
dc.relation.referencesA. Garde, R. Schroeder, A. Voss, P. Caminal, S. Benito, and B. F. Giraldo, “Patients on weaning trials classified with support vector machines,” Physiol. Meas., no. 31, p. 979993, 2010.spa
dc.relation.referencesI. Steinwart and A. Chrismann, “Super vector machine, information science and statistics,” Editorial Springer., 2008.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcCuidados intensivos respiratoriosspa
dc.subject.armarcRespiratory intensive careeng
dc.subject.armarcRespiradores (Equipo médico)spa
dc.subject.armarcRespirators (Medical equipment)eng
dc.subject.armarcRespiración artificialspa
dc.subject.armarcArtificial respirationeng
dc.subject.armarcSistemas de soporte vital (Cuidados intensivos)spa
dc.subject.armarcLife support systems (Critical care)eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-nd/4.0/