Show simple item record

dc.contributor.authorPaz Penagos, Hernán
dc.contributor.authorAcero Briceño, Ximena
dc.contributor.authorFerro Escobar, Roberto
dc.date.accessioned2023-06-26T17:57:48Z
dc.date.available2023-06-26T17:57:48Z
dc.date.issued2007
dc.identifier.issn0121-5132spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2466
dc.description.abstractObedeciendo a la necesidad de construir antenas con amplios anchos de banda y dimensiones más pequeñas que las antenas típicas, se ha implementado la geometría fractal como recurso para cumplir con estos requerimientos. El trabajo de investigación presentado aquí está principalmente enfocado a analizar los rasgos geométricos de una antena fractal construida con el modelo de Mandelbrot, con el fin de verificar las características y el desempeño de la misma. Se construyeron varias antenas con este modelo, cada una con un número de iteración diferente; se observaron sus características en cuanto a resistencia de pérdida, inductancia, capacitancia, eficiencia, resistencia de radiación, factor de calidad y ancho de banda, con el propósito de averiguar la influencia de la geometría fractal en el comportamiento de la antena.spa
dc.description.abstractObeying the necessity to make antennas with wide bandwidth and dimensions smaller than the typical antennas, fractal geometry has been implemented like resource to fullfit these requirements. Investigation displayed here is focused to analyze the geometric characteristics of an antenna fractal built under Mandelbrot's model, with the purpose of verifying the characteristics and performance of the same one. Several antennas under this model, each one with a number of different iteration were built, were observed their characteristics as far as resistance of losses, inductance, capacitance, efficiency, radiation resistance, factor of quality and bandwidth, in order to investigate the influence of geometry fractal in the behavior of the antenna.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Escuela Colombiana de Ingeniería Julio Garavitospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleDiseño de una antena fractal siguiendo el modelo de Mandelbrotspa
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Ecitrónicaspa
dc.publisher.placeColombiaspa
dc.relation.citationendpage44spa
dc.relation.citationissue66spa
dc.relation.citationstartpage35spa
dc.relation.citationvolume17spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalRevista de la Escuela Colombiana de Ingenieríaspa
dc.relation.referencesMandelbrot, B.B. (1983). The fractal geometry of nature. Nueva York: W.H. Freeman.spa
dc.relation.referencesFalconer, K.J. (1990). Fractal Geometry: mathematical foundations and applications. Nueva York: Wiley.spa
dc.relation.referencesPeitgen, H.O.; Henriques, J.M. &Penedo, L.F. (eds.).(1991).Fractals in the fundamental and applied science. Amsterdam: North Holland.spa
dc.relation.referencesCherepano, G.P.; Balankin, A.S. & Ivanova, V.S. (1995). Fractal fracture mechanics. Engineering Fracture Mechanics, vol. 51, pp. 997-1033.spa
dc.relation.referencesJeng, J.H.; Varandan, V.V. & Varadan, V.K. (1987). Fractal finite element mesh generation for vibration problems, J. Acous. Amer., vol. 82, pp. 1829-1833.spa
dc.relation.referencesLakhtakia, A.; Holter, N.S.; Varadan, V.K. and Varadan, V.V. Self-similarity in diffraction by a self-similar fractal screen. IEEE Trans. Ant. Propagat, vol. 35, pp. 236-239.spa
dc.relation.referencesJaggard, D.L. (1995). Fractal electrodynamics: Wave interaction with discretely self-similar structures en Electromagnetic Symmetry. Taylor, pp. 231-280.spa
dc.relation.referencesJaggard, D.L. (1990). On fractal electrodymanics en Recent Advances in Electromagnetic Theory. Springer Verlag, pp. 183-224.spa
dc.relation.referencesPeitgen, H.O.; Jurgens, H. & Saupe, D. (1992). Chaos and fractals: new frontiers of science. Nueva York: Springer Verlag.spa
dc.relation.referencesWerner, D.H.; Werner, P.L. & Church, K.H. (2001). Genetically engineered multiband fractal antennas. Electron. Lett., vol. 37, pp. 1150-1151.spa
dc.relation.referencesWerner, D.H.; Werner, P.L. & Church, K.H.; Culver, J.W. & Eason, S.D. (2001). Genetically engineered dual-band fractal antennas. IEEE AP-S Inter. Symp. 2001, vol. 3, pp. 628-631.spa
dc.relation.referencesJacquin. A.E. (1993). Fractal image coding: A review. Proc. IEEE, vol. 81, pp. 1451-1465.spa
dc.relation.referencesWohlberg, B. & DeJager, G. (1999). Review of the fractal image coding literature. IEEE Trans. Image Processing, vol. 8, pp. 1716-1729.spa
dc.relation.referencesBarnsley, M.F. & Hurd, L.P. (1993). Fractal image compression. Wellesly MA: A.K. Peters.spa
dc.relation.referencesCollin, R.E. & Zucker, F.J. (1969). Antenna Theory Pt. 1. New York: McGraw-Hill.spa
dc.relation.referencesWheeler, H.A. (1975). Small Antennas. IEEE Trans. Ant. Propagat, vol. AP-23, pp. 462-469.spa
dc.relation.referencesJaggard, D.L. (1997). Fractal electrodymanics: from super antennas to superlattices. Fractals in Engineering, Springer, pp. 204-221.spa
dc.relation.referencesWerner, D.H.; Haupt, R.L. & Werner, P.L. (1999). Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Ant. Propagat. Mag., vol. 41, n° 5, pp. 37-59.spa
dc.relation.referencesWalker, G.J. & James, J.R. (1998). FRactal volume antennas. Electron. Lett. , vol. 34, pp. 1536-1537.spa
dc.relation.referencesWerner, D.H.; Werner, P.L.; Jaggard, D.L.; Jaggard, A.D.; Puente, C. & Haupt, R.L. (1998). The theory and design of fractal antenna arrays. Frontiers in Electromagnetics, D.H. Werner and R. Mittra (eds.), pp. 94-203.spa
dc.relation.referencesBaliarda, C.P.; Romeu, J. & Cardama, A. (2000). The Koch monopole: A small fractal antenna. IEEE. Trans. Ant. Propagat., vol. 48, pp. 1773-1781.spa
dc.relation.referencesWerner, D.H.; Rubio Bretones, A. & Long, B.R. (1999). Radication characteristics of thin-wire ternary fractal trees. Electron. Lett., vol. 35, pp. 609-610.spa
dc.relation.referencesPuente, C.; Romeu, J.; Bartolome, R. & Pous, R. (1996). Pertubation of the Sierpinski antenna to allocate operating bands. Electron. Lett., vol. 32, pp. 2186-2187.spa
dc.relation.referencesKraus, John D. (1988). Antennas, 2nd ed. McGraw Hill.spa
dc.relation.referencesBalanis, C.A. (1982). Antenna Theory, analysis and design, Harper & Row, Publishers.spa
dc.relation.referencesVinoy, K.J. (2002). Fractal shaped antenna elements for Wide-and Multi-band wireless applications. The Pennylvania State University The GRaduate School College of Engineering. August.spa
dc.relation.referencesGonzález, J.M. & Romeu, J. (2002). Task 1.1 Final Report, FRactalcoms Project (IST 2001-33055). Deliverable D1, Dec. 17th.spa
dc.relation.referencesJasik, H. (ed.). (1961). Antenna Engineering Handbook, Nueva York: McGraw-Hill.spa
dc.relation.referencesHarrington, R.F. (1968). Field Computations by Moment Methods, Nueva York: McMillan.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalDiseñospa
dc.subject.proposalAntenaspa
dc.subject.proposalModelo fractalspa
dc.subject.proposalExperimentaciónspa
dc.subject.proposalDesigneng
dc.subject.proposalAntennaeng
dc.subject.proposalFractal modeleng
dc.subject.proposalExperimentationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/