Show simple item record

dc.contributor.authorRamos Acosta, Diego Alonso
dc.contributor.authorSusa Rincón, José Luis
dc.date.accessioned2023-07-28T20:19:51Z
dc.date.available2023-07-28T20:19:51Z
dc.date.issued2010
dc.identifier.issn0121-5132spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2524
dc.description.abstractEn este artículo se presentan el desarrollo, prueba y resultados obtenidos de un algoritmo de evasión de obstáculos basado en el método de campo de potencial (PFM, por su sigla en inglés) y combinado con el método de seguimiento de contornos, para resolver el problema del mínimo local que posee el PFM. Adicionalmente, se divulgan los resultados de la investigación, cuyo propósito fue desarrollar un algoritmo que permitiera a un robot móvil desplazarse en forma autónoma, con el fin de alcanzar una meta, evitando los obstáculos que encontrara en su trayectoria. Los requerimientos para el diseño del algoritmo fueron alta velocidad de respuesta, bajo consumo de recursos de hardware y capacidad de respuesta ante situaciones no previstas. Las simulaciones demuestran que el algoritmo soluciona el problema del mínimo local, inherente al uso del PFM, y puede implementarse en un robot real, cumpliendo con las características citadas previamente.spa
dc.description.abstractThis article presents the development, testing and results from an obstacle avoidance algorithm based on potential field method (PFM), combined with the contour following method to solve the problem of local minimum in the PFM. In this paper, we report the findings of the research, whose objective was to develop an algorithm that allowed a mobile robot to navigate autonomously to reach a goal, avoiding obstacles in its path. Requirements for the design of the algorithm were high response speed, low consumption of hardware resources and capacity answer to unforeseen situations. The simulations show that the algorithm solves the problem of local minimum-inherent in the use of PFM-and it can be implemented in a real robot, since it fulfills the mentioned characteristics.eng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Escuela Colombiana de Ingeniería Julio Garavitospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/spa
dc.titleNavegación de un robot móvil autónomo utilizando el concepto de campo de fuerza combinadospa
dc.title.alternativeNavigation of an autonomous mobile robot using the combined force field concepteng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Ecitrónicaspa
dc.identifier.urlhttps://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/
dc.publisher.placeBogotáspa
dc.relation.citationendpage56spa
dc.relation.citationissue78spa
dc.relation.citationstartpage49spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalRevista de la Escuela Colombiana de Ingenieríaeng
dc.relation.referencesKhatib, O. (1985). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, IEEE International Conference on Robotics and Automation.spa
dc.relation.referencesMoravec, H.P. & Elfes, A. (1985). High Resolution Maps from Wide Angle Sonar, IEEE Conference on Robotics and Automation. Washington, D.C., pp. 116-121.spa
dc.relation.referencesReynolds, C.W. (1986). Steering Behaviors For Autonomous Characters, Sony Computer Entertainment America.spa
dc.relation.referencesElfes, A. (1987). Sonar-based Real-World Mapping and Navigation, IEEE Journal of Robotics and Automation, vol. RA-3, No. 3, pp. 249-265.spa
dc.relation.referencesMoravec, H.P. (1988). Sensor Fusion in Certainty Grids for Mobile Robots, AI Magazine, Summer, pp. 61-74.spa
dc.relation.referencesBorenstein, J. & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots, IEEE Trans. on Systems, Man and Cybernetics, 19( 5 ): 1179-1187.spa
dc.relation.referencesBorenstein, J. & Koren, Y. (1990). Real-time obstacle avoidance for fast mobile robots in cluttered environments, Proceedings of IEEE International Conference on Robotics and Automation. Cincinnati, Ohio, pp. 572-577.spa
dc.relation.referencesBorenstein, J. & Koren, Y. (1991, June). The Vector Field Histogram - Fast Obstacle Avoidance For Mobile Robots, IEEE Journal of Robotics and Automation, vol. 7, No. 3, pp. 278-288.spa
dc.relation.referencesConnolly, C.I. (1992). Applications of harmonic functions to robotics, Proceedings of the IEEE International Symposium on Intelligent Control, pp. 498-502.spa
dc.relation.referencesYun, X.P. & Tan, K.C. (1997). A wall-following method for escaping local minima in potential field based motion planning, Proceedings of International Conference on Advanced Robotics. Monterrey, pp. 421-426.spa
dc.relation.referencesUlrich, I. & Borenstein, J. (1998). VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots, Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven, Belgium, May 16-21, pp. 1572-1577.spa
dc.relation.referencesUlrich, I. & Borenstein, J. (2000). VFH*: Local Obstacle Avoidance with Look-Ahead Verification, IEEE International Conference on Robotics and Automation. San Francisco, CA, April 24-28, pp. 2505-2511.spa
dc.relation.referencesIm, K.Y. & Oh, S.Y. (2000). An Extended Virtual Force Field Based Behavioral Fusion with Neural Networks and Evolutionary Programming for Mobile Robot Navigation, Evolutionary Computation, IEEE Congress, vol. 2, pp. 1238-1244.spa
dc.relation.referencesChengqing, L., Hang, M., Krishnan, H. & Ser Yong, L. (2000). Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation, Proceedings of the 2000 IEEE. International Conference on Robotics & Automation.spa
dc.relation.referencesZou Xi-yong, Zhu Jing (2003). Virtual local target method for avoiding local minimum in potential field based robot navigation, ISSN 1009 - 3095, Journal of Zhejiang University Science, vol. 4, No. 3, pp. 264-269.spa
dc.relation.referencesSeul Jung, Eun Soo Jang, Hsia, T.C. (2005). Collision Avoidance of a Mobile Robot Using Intelligent Hybrid Force Control Technique, Proceedings of the 2005 IEEE. International Conference on Robotics and Automation. Barcelona.spa
dc.relation.referencesZhiqiang Yu, Gao Meng, Huaping Liu, Xiaoyan Deng, Jianhua Liu,Qiurui Wu & Yuewei Liu (2008). Dynamic Obstacle Avoidance in Polar Coordinates for Mobile Robot Based on Laser Radar, IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.spa
dc.relation.referencesHiroaki Seki, Satoshi Shibayama, Yoshitsugu Kamiya & Masatoshi Hikizu (2008). Practical Obstacle Avoidance Using Potential Field for a Nonholonmic Mobile Robot with Rectangular Body, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao. China.spa
dc.relation.referencesFilliat, D. (2008). Interactive learning of visual topological navigation, París: Ensta - UEI.spa
dc.relation.referencesFan Wen, Zhenshen Qu, Changhong Wang & Bin Hu (2008). Study on Real-Time Obstacle Avoidance of Mobile Robot Based on Vision Sensor, Proceedings of the IEEE International Conference on Automation and Logistics Qingdao. China.spa
dc.relation.referencesAyomoh, M.K.O. & Olunloyo, V.O.S. (2009). Autonomous Mobile Robot Navigation Using Hybrid Virtual Force Field Concept, European Journal of Scientific Research, ISSN 1450-216X, vol. 31, No. 2, pp. 204-228, EuroJournals Publishing, Inc., http:// www.eurojournals.com/ejsr.htm.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalEvasión de obstáculosspa
dc.subject.proposalMétodo de campo de potencialspa
dc.subject.proposalNavegación autónomaspa
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalObstacle avoidanceeng
dc.subject.proposalPotential field methodeng
dc.subject.proposalAutonomous navigationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/