Mostrar el registro sencillo del ítem

dc.contributor.authorOrtiz, Christian H.
dc.contributor.authorEsguerra Arce, Johanna
dc.contributor.authorEsguerra Arce, Adriana
dc.contributor.authorBermúdez Castañeda, Ángela
dc.contributor.authorCaicedo Angulo, Julio César
dc.contributor.authorAguilar, Yesid
dc.date.accessioned2024-07-02T19:43:05Z
dc.date.available2024-07-02T19:43:05Z
dc.date.issued2022
dc.identifier.issn0301-679Xspa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3141
dc.description.abstractThis new material is based on an oxide dispersion strengthened iron, obtained by a partial chemical reduction of ground mill scale for subsequent compaction and sintering. The mechanical properties depend on the porosity level and the quantity of the iron oxide reinforcement. Having into account the characteristics of the reinforcement, the tribological behavior was evaluated at two types or ironox compounds under dry sliding conditions. The effect of porosity was evaluated and a comparison with an AISI 1040 steel was done. Experimental test was carried out using a pin on disk tribometer at different temperature. It was found that, on the contrary of AISI 1040 steel, the wear rate of ironox compounds with temperature tends to slow down.eng
dc.description.abstractEste nuevo material se basa en una dispersión de óxido de hierro reforzado, obtenida mediante una reducción química parcial de cascarilla de laminación molida para su posterior compactación y sinterización. Las propiedades mecánicas dependen del nivel de porosidad y de la cantidad del refuerzo de óxido de hierro. Teniendo en cuenta las características del refuerzo, se evaluó el comportamiento tribológico en dos tipos o compuestos ironox en condiciones de deslizamiento en seco. Se evaluó el efecto de la porosidad y se realizó una comparación con un acero AISI 1040. La prueba experimental se llevó a cabo utilizando un tribómetro de perno sobre disco a diferentes temperaturas. Se observó que, a diferencia del acero AISI 1040, la velocidad de desgaste de los compuestos ironox con la temperatura tiende a disminuir.spa
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElSevierspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0301679X22004066spa
dc.titleThe high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproducteng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://doi.org/10.1016/j.triboint.2022.107834
dc.identifier.eissn1879-2464spa
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0301679X22004066
dc.relation.citationeditionNovember 2022spa
dc.relation.citationendpage10spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume175spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalTribology Internationaleng
dc.relation.referencesEissa M, Ahmed A, El-Fawkhry M. Conversion of mill scale waste into valuable products via carbothermic reduction. J Met 2015;2015:1–9. https://doi.org/ 10.1155/2015/926028spa
dc.relation.referencesSustainable consumption and production – United Nations Sustainable Development, (n.d.). 〈https://www.un.org/sustainabledevelopment/sustainable -consumption-production/〉 (accessed November 15, 2021).spa
dc.relation.referencesPolítica Nacional de Produccion ´ y Consumo Sostenible - Red de Desarrollo Sostenible de Colombia, (n.d.). 〈https://www.rds.org.co/es/recursos/politica-nac ional-de-produccion-y-consumo-sostenible〉 (accessed November 16, 2021).spa
dc.relation.referencesTirado Gonz´ alez JG, Reyes Segura BT, Esguerra-Arce J, Bermúdez Castaneda ˜ A, Aguilar Y, Esguerra-Arce A. An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy. J Clean Prod 2020;268:122362. https://doi.org/10.1016/j. jclepro.2020.122362.spa
dc.relation.referencesHowson TE, Mervyn DA, Tien JK. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy. Metall Trans A 1980;11:1609–16. https://doi.org/10.1007/BF02654525.spa
dc.relation.referencesZhou Y, Gao Y, Wei S, Pan K, Hu Y. Preparation and characterization of Mo/Al2O3 composites. Int J Refract Met Hard Mater 2016;54:186–95. https://doi.org/ 10.1016/j.ijrmhm.2015.07.033.spa
dc.relation.referencesTu S. Emering to structural integrity technology for high-temperature applications. Front Mech Eng 2007:375–87.spa
dc.relation.referencesSista KS, Dwarapudi S, Nerune VP. Direct reduction recycling of mill scale through iron powder synthesis. ISIJ Int 2019;59:787–94. https://doi.org/10.2355/ isijinternational.ISIJINT-2018-628.spa
dc.relation.referencesAskeland DR. The science and engineering of materials. Sci Eng Mater 1996. https://doi.org/10.1007/978-1-4613-0443-2.spa
dc.relation.referencesElhadi A, Bouchoucha A, Jomaa W, Zedan Y, Schmitt T, Bocher P. Study of surface wear and damage induced by dry sliding of tempered AISI 4140 steel against hardened AISI 1055 steel. Tribol Ind 2017;38:475–85.spa
dc.relation.referencesPanin V, Kolubaev A, Tarasov S, Popov V. Subsurface layer formation during sliding friction. Wear 2001;249:860–7. https://doi.org/10.1016/S0043-1648(01) 00819-5.spa
dc.relation.referencesFleming JR, Suh NP. Mechanics of crack propagation in delamination wear. Wear 1977;44:39–56. https://doi.org/10.1016/0043-1648(77)90083-7.spa
dc.relation.referencesStudy of surface wear and damage induced by dry sliding of tempered, (n.d.).spa
dc.relation.referencesZambrano OA, Gomez ´ JA, Coronado JJ, Rodríguez SA. The sliding wear behaviour of steels with the same hardness. Wear 2019;418–419:201–7. https://doi.org/ 10.1016/j.wear.2018.12.002.spa
dc.relation.referencesSurface film formation and metallic wear, Wear. 1 (1957) 163. 〈https://doi. org/10.1016/0043–1648(57)90019–4.spa
dc.relation.referencesBahrami A, Soltani N, Pech-Canul MI, Guti´errez CA. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit Rev Environ Sci Technol 2016;46:143–208. https://doi.org/10.1080/ 10643389.2015.1077067.spa
dc.relation.referencesDeaquino-Lara R, Soltani N, Bahrami A, Guti´errez-Castaneda ˜ E, García-Sanchez ´ E, Hernandez-Rodríguez MAL. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater Des 2015; 67:224–31. https://doi.org/10.1016/j.matdes.2014.11.045.spa
dc.relation.referencesBahrami A, Pech-Canul MI, Gutierrez CA, Soltani N. Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. J Alloy Compd 2015;644:256–66. https://doi.org/ 10.1016/j.jallcom.2015.04.194.spa
dc.relation.referencesSoltani N, Jafari Nodooshan HR, Bahrami A, Pech-Canul MI, Liu W, Wu G. Effect of hot extrusion on wear properties of Al–15wt% Mg2Si in situ metal matrix composites. Mater Des 2014;53:774–81. https://doi.org/10.1016/j. matdes.2013.07.084.spa
dc.relation.referencesBahrami A, Soltani N, Pech-Canul M. Effect of sintering temperature on tribological behavior of Ce-TZP/Al 2 O 3 -aluminum nanocomposite. J Compos Mater 2015;49: 3507–14. https://doi.org/10.1177/0021998314567010.spa
dc.relation.referencesAgrawal R, Mukhopadhyay A. Optimization of wear performance and COF of AISI 1040 steel using grey relational analysis. Mater Today Proc 2022. https://doi.org/ 10.1016/j.matpr.2022.03.665.spa
dc.relation.referencesLi X, Sosa M, Olofsson U. A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear 2015;340–341:31–40. https:// doi.org/10.1016/j.wear.2015.01.032.spa
dc.relation.referencesConshohocken W. Standard test method for wear testing with a pin-on-disk apparatus 1. Wear V 2007:1–5.spa
dc.relation.referencesKing PC, Reynoldson RW, Brownrigg A, Long JM. Pin on disc wear investigation of nitrocarburised H13 tool steel. Surf Eng 2005;21:99–106. https://doi.org/ 10.1179/174329405×40911.spa
dc.relation.referencesFederici M, Straffelini G, Gialanella S. Pin-on-disc testing of low-metallic friction material sliding against HVOF coated cast iron: modelling of the contact temperature evolution. Tribol Lett 2017;65:121. https://doi.org/10.1007/s11249- 017-0904-yspa
dc.relation.referencesMunagala VNV, Chromik RR. The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites. Surf Coat Technol 2021;411: 126974. https://doi.org/10.1016/j.surfcoat.2021.126974.spa
dc.relation.referencesPoquillon D, Baco-Carles V, Tailhades P, Andrieu E. Cold compaction of iron powders - relations between powder morphology and mechanical properties: Part II. Bending tests: results and analysis. Powder Technol 2002;126:75–84. https:// doi.org/10.1016/S0032-5910(02)00035-9.spa
dc.relation.referencesKorim NS, Hu L. Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method. Mater Res Express 2020;7. https:// doi.org/10.1088/2053-1591/ab8cf6.spa
dc.relation.referencesVergne C, Boher C, Levaillant C, Gras R. Analysis of the friction and wear behavior of hot work tool scale: application to the hot rolling process. Wear 2001;250: 322–33. https://doi.org/10.1016/S0043-1648(01)00598-1.spa
dc.relation.referencesLiang C, Wang C, Zhang K, Tan H, Liang M, Xie Y, et al. The study of mechanical and tribology properties at room- and high-temperature in a (NiCoFe)86.5(AlTi)12 (WMoV)1.5 high-entropy alloy. J Alloy Compd 2022;911:165082. https://doi.org/ 10.1016/j.jallcom.2022.165082.spa
dc.relation.referencesSerebriakov I, Puchi-Cabrera ES, Dubar L, Moreau P, Meresse D, BarberaSosa JGLa. Friction analysis during deformation of steels under hot-working conditions. Tribol Int 2021;158:106928. https://doi.org/10.1016/j. triboint.2021.106928.spa
dc.relation.referencesLancaster JK. The influence of temperature on metallic wear. Proc Phys Soc Sect B 1957;70:112–8. https://doi.org/10.1088/0370-1301/70/1/316.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalRecyclingeng
dc.subject.proposalHigh temperatureeng
dc.subject.proposalWeareng
dc.subject.proposalFriction coefficienteng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-sa/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-sa/4.0/