Show simple item record

dc.contributor.authorGiraldo , Francisco
dc.contributor.authorEchavarría, Aida
dc.contributor.authorBejarano, Gilberto
dc.date.accessioned2024-07-03T16:08:13Z
dc.date.available2024-07-03T16:08:13Z
dc.date.issued2022
dc.identifier.issn1879-2731spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3143
dc.description.abstractSurgical devices and tools are manufactured in AISI 420 martensitic stainless steel, due to its hardenability, adequate hardness and acceptable biocompatibility. Nevertheless, many surface modification strategies are being investigated with a view to improving this material by providing it with self-protection against the colonization of bacteria. One such strategy is the use of a TiAlVN-Ag nanocomposite coating to promote bactericidal effect in surgical devices; however, it is necessary to study the electrochemical response of such coatings to aggressive environments that simulate disinfection and sterilization processes. The aim of this work is to study the relationship between the microstructure, chemical phases and the electrochemical and corrosion response of TiAlVN-Ag coating, varying the amount of silver with the target power increase (0, 50, 70, 80 and 100 W). To study the microstructure, chemical phases, scanning and high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction were used. Roughness, microhardness, residual stresses, qualitative adhesion of coatings were estimated by atomic force microscopy, Knoop indentation, profilometer and Rockwell C indentation, respectively. Electrochemical behavior and corrosion protection of coatings were studied using electrochemical impedance spectroscopy and potentiodynamic polarization. TiAlVN-Ag 50W coating showed an improvement in electrochemical behavior and in protection of the steel against corrosion and exhibiting higher hardness than that of the AISI 420 stainless steel substrates. This coating exhibited a dense microstructure and high crystallinity, indicating that the low Ag content does not affect the insulating nature of the coating matrix.eng
dc.description.abstractLos dispositivos y herramientas quirúrgicos se fabrican en acero inoxidable martensítico AISI 420, debido a su templabilidad, dureza adecuada y biocompatibilidad aceptable. No obstante, se están investigando numerosas estrategias de modificación de la superficie con vistas a mejorar este material dotándolo de autoprotección frente a la colonización de bacterias. Una de estas estrategias es el uso de un recubrimiento nanocompuesto de TiAlVN-Ag para promover el efecto bactericida en dispositivos quirúrgicos; sin embargo, es necesario estudiar la respuesta electroquímica de dichos recubrimientos a ambientes agresivos que simulen procesos de desinfección y esterilización. El objetivo de este trabajo es estudiar la relación entre la microestructura, las fases químicas y la respuesta electroquímica y a la corrosión del recubrimiento TiAlVN-Ag, variando la cantidad de plata con el incremento de potencia objetivo (0, 50, 70, 80 y 100 W). Para estudiar la microestructura y las fases químicas, se utilizaron la microscopía electrónica de barrido y de transmisión de alta resolución, la espectroscopia de rayos X de energía dispersiva y la difracción de rayos X. La rugosidad, la microdureza, las tensiones residuales y la adherencia cualitativa de los recubrimientos se estimaron mediante microscopía de fuerza atómica, indentación Knoop, perfilómetro e indentación Rockwell C, respectivamente. El comportamiento electroquímico y la protección contra la corrosión de los recubrimientos se estudiaron mediante espectroscopia de impedancia electroquímica y polarización potenciodinámica. El recubrimiento TiAlVN-Ag 50W mostró una mejora en el comportamiento electroquímico y en la protección del acero frente a la corrosión, exhibiendo una dureza superior a la de los sustratos de acero inoxidable AISI 420. Este recubrimiento presentaba una microestructura densa y una alta cristalinidad, lo que indica que el bajo contenido en Ag no afecta a la naturaleza aislante de la matriz del recubrimiento.spa
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElSevierspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0040609022004229spa
dc.titleCorrosion performance of TiAlVN-Ag nanocomposite coating deposited by reactive direct current magnetron sputteringeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://doi.org/10.1016/j.tsf.2022.139518
dc.identifier.eissn0040-6090spa
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0040609022004229
dc.publisher.placeEstados Unidosspa
dc.relation.citationeditionNovember 2022spa
dc.relation.citationendpage11spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume761spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalThin Solid Filmseng
dc.relation.referencesH.D. Mejía, A.M. Echavarría, G. Bejarano G Influence of Ag-Cu nanoparticles on the microstructural and bactericidal properties of TiAlN(Ag,Cu) coatings for medical applications deposited by Direct Current (DC) magnetron sputtering Thin Solid Films, 687 (2019), Article 137460, 10.1016/j.tsf.2019.137460spa
dc.relation.referencesH.D. Mejía, A.M. Echavarría, J.A. Calderón, G. Bejarano G Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by dc magnetron sputtering J. Alloy. Compd., 828 (2020), Article 154396, 10.1016/J.JALLCOM.2020.154396spa
dc.relation.referencesQ. Cai, S. Li, J. Pu, X. Bai, H. Wang, Z. Cai, X. Wang Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering Surf. Coat. Technol., 354 (2018), pp. 194-202, 10.1016/j.surfcoat.2018.09.006spa
dc.relation.referencesA.M. Echavarría, P. Rico, J.L. Gómez Ribelles, M.A. Pacha-Olivenza, M.C. Fernández-Calderón, G. Bejarano-G Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications Vacuum., 145 (2017), pp. 55-67, 10.1016/j.vacuum.2017.08.020spa
dc.relation.referencesA.M. Echavarría, J.A. Calderón, G. Bejarano Characterization of the structure and electrochemical behavior of Ag-TaN nanostructured composite coating for biomedical applications Surf. Coat. Technol., 345 (2018), pp. 1-12, 10.1016/j.surfcoat.2018.04.012spa
dc.relation.referencesS.Calderon Velasco, V. Lopez, C.F. Almeida Alves, A. Cavaleiro, S. Carvalho Structural and electrochemical characterization of Zr-C-N-Ag coatings deposited by DC dual magnetron sputtering Corros. Sci., 80 (2014), pp. 229-236, 10.1016/j.corsci.2013.11.036spa
dc.relation.referencesD.K. Merl, P. Panjan, M. Panjan, M. Čekada The role of surface defects density on corrosion resistance of PVD hard coatings Plasma Process. Polym., 4 (2007), pp. 613-617, 10.1002/ppap.200731416spa
dc.relation.referencesH.A. Jehn Improvement of the corrosion resistance of PVD hard coating-substrate systems Surf. Coat. Technol., 125 (2000), pp. 212-217, 10.1016/S0257-8972(99)00551-4spa
dc.relation.referencesA.M. Echavarría, S. Robledo, G. Gilberto Bejarano Influence of Ag nanoparticles on the mechanical and tribological properties and on the cytotoxic and bactericidal effects of TaN(Ag) coatings Rev. Metal. (2017), p. 53, 10.3989/revmetalm.085spa
dc.relation.referencesH.D. Mejía V, D. Perea, G. Bejarano Development and characterization of TiAlN (Ag, Cu) nanocomposite coatings deposited by DC magnetron sputtering for tribological applications Surf. Coat. Technol., 381 (2020), Article 125095, 10.1016/j.surfcoat.2019.125095spa
dc.relation.referencesASTM, standard Test Method for Knoop Indentation Hardness of Advanced ceramics. ASTM C1326-13, (2018). doi:10.1520/C1326-13R18.spa
dc.relation.referencesDeutsches Institute fur Normung, DIN EN ISO 26423 Determination of coatings thickness by crater-griding method, Germany, 2016.spa
dc.relation.referencesG. Stoney The tension of metallic films deposited by electrolysis Proc. R. Soc. A (1999), pp. 172-175, 10.1098/rspa.1909.0021spa
dc.relation.referencesN. Vidakis, A. Antoniadis, N. Bilalis The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds J. Mater. Process. Technol., 143-144 (2003), pp. 481-485, 10.1016/S0924-0136(03)00300-5spa
dc.relation.referencesD.A. Delisle, J.E. Krzanowski Surface morphology and texture of TiAlN/CrN multilayer coatings Thin Solid Film., 524 (2012), pp. 100-106, 10.1016/J.TSF.2012.09.073spa
dc.relation.referencesX. Liu, J. Kavanagh, A. Matthews, A. Leyland The combined effects of Cu and Ag on the nanostructure and mechanical properties of CrCuAgN PVD coatings Surf. Coat. Technol., 284 (2015), pp. 101-111, 10.1016/j.surfcoat.2015.08.070spa
dc.relation.referencesP. Balashabadi, M.M. Larijani, E. Jafari-Khamse, H. Seyedi The role of Cu content on the structural properties and hardness of TiN –Cu nanocomposite film J. Alloy. Compd., 728 (2017), pp. 863-871, 10.1016/J.JALLCOM.2017.08.267spa
dc.relation.referencesA.M. Echavarría, S. Robledo, G. Bejarano G Influencia de las nanopartículas de Ag sobre las propiedades mecánicas y tribológicas y en el efecto citotóxico y bactericida de los recubrimientos de TaN(Ag) Rev. Metal., 53 (2017), p. 085, 10.3989/revmetalm.085spa
dc.relation.referencesH.D. Mejía V, A.M. Echavarria, G. Bejarano G Detailed study of the electrochemical behavior of low-reflectivity TiAlN coatings Surf. Innov., 9 (2021), pp. 293-307, 10.1680/jsuin.20.00079spa
dc.relation.referencesC.S. Pande, K.P. Cooper Nanomechanics of Hall-Petch relationship in nanocrystalline materials Prog. Mater. Sci., 54 (2009), pp. 689-706, 10.1016/j.pmatsci.2009.03.008spa
dc.relation.referencesP. Panjan, A. Drnovšek, P. Gselman, M. Čekada, M. Panjan, Review of growth defects in thin films prepared by PVD techniques, 2020. doi:10.3390/COATINGS10050447.spa
dc.relation.referencesJ.E. Alfonso, J. Torres, J.F. Marco Influence of the substrate bias voltage on the crystallographic structure and surface composition of Ti6Al4V thin films deposited by rf magnetron sputtering Braz. J. Phys., 36 (2006), pp. 994-996, 10.1590/S0103-97332006000600052spa
dc.relation.referencesC.M. Garzón, J.E. Alfonso, E.C. Corredor Characterization of adherence for Ti6Al4V films RF magnetron sputter grown on stainless steels Dyna, 81 (2014), p. 175, 10.15446/dyna.v81n185.38019spa
dc.relation.referencesM. Jaroš, J. Musil, S. Haviar Interrelationships among macrostress, microstructure and mechanical behavior of sputtered hard Ti(Al,V)N films Mater. Lett., 235 (2019), pp. 92-96, 10.1016/j.matlet.2018.09.173spa
dc.relation.referencesM. Jaroš, J. Musil, R. Čerstvý, S. Haviar Effect of energy on macrostress in Ti(Al,V)N films prepared by magnetron sputtering Vacuum, 158 (2018), pp. 52-59, 10.1016/j.vacuum.2018.09.038spa
dc.relation.referencesM. Pfeiler, K. Kutschej, M. Penoy, C. Michotte, C. Mitterer, M. Kathrein The effect of increasing V content on structure, mechanical and tribological properties of arc evaporated Ti-Al-V-N coatings Int. J. Refract. Met. Hard Mater., 27 (2009), pp. 502-506, 10.1016/j.ijrmhm.2008.06.008spa
dc.relation.referencesA.M. Echavarría, J.A. Calderón, G. Bejarano Characterization of the structure and electrochemical behavior of Ag-TaN nanostructured composite coating for biomedical applications Surf. Coat. Technol., 345 (2018), 10.1016/j.surfcoat.2018.04.012spa
dc.relation.referencesG. Li, L. Zhang, F. Cai, Y. Yang, Q. Wang, S. Zhang Characterization and corrosion behaviors of TiN/TiAlN multilayer coatings by ion source enhanced hybrid arc ion plating Surf. Coat. Technol., 366 (2019), pp. 355-365, 10.1016/j.surfcoat.2019.03.027spa
dc.relation.referencesC. Liu, Q. Bi, A. Matthews EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution Corros. Sci., 43 (2001), pp. 1953-1961, 10.1016/S0010-938X(00)00188-8spa
dc.relation.referencesF. Liang, Y. Shen, C. Pei, B. Qiu, J. Lei, D. Sun Microstructure evolution and corrosion resistance of multi interfaces Al-TiAlN nanocomposite films on AZ91D magnesium alloy Surf. Coating. Technol., 357 (2019), pp. 83-92, 10.1016/j.surfcoat.2018.09.019spa
dc.relation.referencesM. Stern, A.L. Geary Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves J. Electrochem. Soc., 104 (1957), p. 559, 10.1149/1.2428653spa
dc.relation.referencesS.H. Ahn, J.H. Lee, H.. Kim, J.. Kim A study on the quantitative determination of through-coating porosity in PVD-grown coatings Appl. Surf. Sci., 233 (2004), pp. 105-114, 10.1016/j.apsusc.2004.03.213spa
dc.relation.referencesY. Li, L. Qu, F. Wang The electrochemical corrosion behavior of TiN and (Ti, Al) N coatings in acid and salt solution Corrosion, 45 (2003), pp. 1367-1381, 10.1016/S0010-938X(02)00223-8spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalTitanium aluminum vanadium nitrideeng
dc.subject.proposalSilvereng
dc.subject.proposalNanoparticleeng
dc.subject.proposalCorrosion resistanceeng
dc.subject.proposalElectrochemical behavioreng
dc.subject.proposalMagnetron sputteringeng
dc.subject.proposalCoatingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/