Mostrar el registro sencillo del ítem

dc.contributor.authorBlanco Estupiñan, David Leonardo
dc.contributor.authorBermudez-Castañeda, Angela
dc.contributor.authorMárquez, Sebastian
dc.date.accessioned2024-07-04T19:45:34Z
dc.date.available2024-07-04T19:45:34Z
dc.date.issued2022
dc.identifier.issn0123-2126spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3144
dc.description.abstractTo evaluate the corrosion resistance of stainless-steel injection nozzles under immersion test in biodiesel and perform electrochemical characterization under HNO3 solutions. Methods and materials: Chemical characterization of biofuel was performed to analyze its stability. Immersion tests were carried out for 4 months, evaluating 304 stainless steel under 3 different diesel/biofuel mixtures concentrations. Additionally, polarization tests were done using NOx concentrations above the levels measured from engine emissions. Results and discussion: The use of biofuels in Colombia has been largely driven by ethanol production from vegetable sources. Their use brings some advantages related to reducing emissions of particles and toxic gases (mainly aromatic groups, NOx, and CO2). However, degradation of materials can occur when they are in direct contact with biodiesel. Furthermore, solidification into waxes, which leads to plugging of nozzles, has been reported. However, it is unknown whether this influences oxygen diffusion in the solution and, in turn, affects the corrosion resistance of stainless steel. Conclusions: The corrosion resistance of the 304 stainless steel changed under immersion conditions, even though its protective layer was not affected by the NOx concentrations registered in the biofuel mixtures.eng
dc.description.abstractEvaluar la resistencia a la corrosión de las boquillas de inyección de acero inoxidable bajo ensayo de inmersión en biodiésel, y realizar una caracterización electroquímica bajo soluciones de HNO3. Métodos y materiales: Se realizó la caracterización química del biodiésel para analizar su estabilidad. Se realizaron pruebas de inmersión durante 4 meses, evaluando el acero inoxidable 304 bajo 3 concentraciones diferentes de mezclas de diésel/biocombustible. Además, se realizaron ensayos de polarización con concentraciones de NOx superiores a los niveles medidos en las emisiones de los motores. Resultados y discusión: El uso de biocombustibles en Colombia ha sido impulsado en gran medida por la producción de etanol de origen vegetal. Su uso aporta algunas ventajas relacionadas con la reducción de las emisiones de partículas y gases tóxicos (principalmente, grupos aromáticos, NOx y CO2). Sin embargo, puede producirse una degradación de los materiales cuando están en contacto directo con el biodiésel. Además, se ha informado de solidificación de ceras, que provoca el taponamiento de las boquillas. No obstante, se desconoce si esto influye en la difusión del oxígeno en la solución y, a su vez, afecta a la resistencia a la corrosión del acero inoxidable. Conclusiones: La resistencia a la corrosión del acero inoxidable 304 cambió bajo condiciones de inmersión, aunque su capa protectora no se vio afectada por las concentraciones de NOx registradas en las mezclas de biocombustible.spa
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherPontificia Universidad Javerianaspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://revistas.javeriana.edu.co/index.php/iyu/article/view/30974spa
dc.titlePerformance of Nozzle Steels in Biofuelspa
dc.title.alternativeEvaluación del comportamiento de aceros de toberas aceros de toberas en biocombustiblespa
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://doi.org/10.11144/javeriana.iued26.pnsb
dc.identifier.eissn2011-2769spa
dc.identifier.urlhttps://revistas.javeriana.edu.co/index.php/iyu/article/view/30974
dc.publisher.placeBogotá (Colombia)spa
dc.relation.citationendpage13spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume26spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalIngeniería y Universidad: Engineering for developmentspa
dc.relation.referencesA. Iversen, Sheir’s Corrosion, 1 st ed., Elsevier Science, 2010.spa
dc.relation.referencesS. Deshpande, A. Joshi, S. Vagge and N. Anekar, “Corrosion behavior of nodular cast iron in biodiesel blends”, Eng. Fail. Anal., vol. 105, pp. 1319-1327, 2019, https://doi.org/10.1016/j.engfailanal.2019.07.060spa
dc.relation.referencesF. Anguebes-Franseschi et al., “Physical and Chemical Properties of Biodiesel Obtained from Amazon Sailfin Catfish (Pterygoplichthys pardalis) Biomass Oil,” Journal of Chemistry, vol. 2019, p. 7829630, ene. 2019, https://doi.org/10.1155/2019/7829630spa
dc.relation.referencesE. C. Zuleta, L. Baena, L. A. Rios and J. A. Calderón, “The oxidative stability of biodiésel and its impact on the deterioration of metallic and polymeric materials: a review,” Journal of the Brazilian Chemical Society, vol. 23, no. 12, pp. 2159-2175, 2012, https://doi.org/10.1590/S0103- 50532012001200004spa
dc.relation.referencesJ. Agudelo, E. Gutiérrez y P. Benjumea, “Análisis experimental de la combustión de un motor diésel de automoción operando con mezclas diésel-biodiésel de palma” Dyna, vol. 76, no. 159, p. 103-113, 2009.spa
dc.relation.referencesP. Benjumea and J. Agudelo, “Basic properties of palm oil biodiesel – diesel blends,” vol. 87, no. 10- 11, pp. 2069-2075, 2008, https://doi.org/10.1016/j.fuel.2007.11.004spa
dc.relation.referencesS. Lebedevas and A. Vaicekauskas, "Research into the application of biodiesel in the transport sector of Lithuania", Transport, vol. 21, no. 2, pp. 80-87, 2006, https://doi.org/10.3846/16484142.2006.9638047spa
dc.relation.referencesG. Knothe, “‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties,” Energy & Fuels, vol. 22, no. 2, pp. 1358-1364, 2008. https://doi.org/10.1021/ef700639espa
dc.relation.referencesA. Demirbas, “Progress and recent trends in biofuels,” Progress in Energy and Combustion Science, vol. 33, no. 1, pp. 1-18, 2007, https://doi.org/10.1016/j.pecs.2006.06.001spa
dc.relation.referencesASTM D6751-15 International, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, 2020.spa
dc.relation.referencesASTM D445-17 International, Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity), 2019.spa
dc.relation.referencesS. García-Muentes, F. Lafargue Perez, B. Labrada, M. Díaz and A. Campo-Lafita, “Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador” Revista Cubana de Química, vol. 30, pp. 142-158, abr. 2018.spa
dc.relation.referencesASTM D664-18 International, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titrationel Blend Stock (B100) for Middle Distillate Fuels, 2018.spa
dc.relation.referencesUNE EN 14111, Fat and oil derivatives. Fatty Acid Methyl Esters (FAME). Determination of iodine value, 2003.spa
dc.relation.referencesASTM A570-98 International, Standard Specification for Steel, Sheet and Strip, Carbon, Hot-Rolled (Withdrawn 2000), 1998.spa
dc.relation.referencesASTM E18-03, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, 2003.spa
dc.relation.referencesASTM G31-72 International, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, 2004.spa
dc.relation.referencesG. Dwivedi and M. Sharma, “Impact of cold flow properties of biodiesel on engine performance”, Renew. Sustain. Energy Rev., vol. 31, pp. 650-656, 2014.spa
dc.relation.referencesASTM E3-01 International, Standard Guide for Preparation of Metallographic Specimens, 2001.spa
dc.relation.referencesASTM E407-07 International, Standard test methods for microetching, 2007spa
dc.relation.referencesG. F. Vander Voort et al., “ASM handbook”, Metallogr. Microstruct., vol. 9, pp. 44073-0002, 2004.spa
dc.relation.referencesO. H. Venegas and L. F. Mónico, “Estudio de la influencia del uso de combustibles alternativos en un motor de combustión interna”, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá D. C:, Informe de investigación, 2019.spa
dc.relation.referencesD. Kolman, D. Ford, D. Butt and T. Nelson, “Corrosion of 304 stainless steel exposed to nitric acidchloride environments”, Corros. Sci., vol. 39, no. 12, pp. 2067-2093, 1997. https://doi.org/10.1016/S0010-938X(97)00092-9spa
dc.relation.referencesK. Ishimi, Y. Ida, F. Tsutaka and Y. K. Sugimoto, “Nitric Acid Passivation Treatment of Type 304 Stainless Steels with Different Surface Polishing Conditions and Changes in Pitting Inhibition Effect of The Treatment with Exposure to Corrosion Environments”, J. Surf. Finish. Soc. Jpn., vol. 66, no. 4, pp. 158-164, 2015, https://doi.org/10.4139/sfj.66.158spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalBiofueleng
dc.subject.proposalNozzleeng
dc.subject.proposalStainless steeleng
dc.subject.proposalBicombustiblespa
dc.subject.proposalToberasspa
dc.subject.proposalAcero inoxidablespa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/