Mostrar el registro sencillo del ítem

dc.contributor.authorMorales, María Alejandra
dc.contributor.authorMaranon, Alejandro
dc.contributor.authorHernandez, Camilo
dc.contributor.authorPORRAS HOLGUIN, ALICIA
dc.date.accessioned2024-07-05T18:44:55Z
dc.date.available2024-07-05T18:44:55Z
dc.date.issued2021
dc.identifier.issn2073-4360spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3146
dc.description.abstractNatural filler-based composites are an environmentally friendly and potentially sustainable alternative to synthetic or plastic counterparts. Recycling polymers and using agro-industrial wastes are measures that help to achieve a circular economy. Thus, this work presents the development and characterization of a 3D printing filament based on recycled polypropylene and cocoa bean shells, which has not been explored yet. The obtained composites were thermally and physically characterized. In addition, the warping effect, mechanical, and morphological analyses were performed on 3D printed specimens. Thermal analysis exhibited decreased thermal stability when cacao bean shell (CBS) particles were added due to their lignocellulosic content. A reduction in both melting enthalpy and crystallinity percentage was identified. This is caused by the increase in the amorphous structures present in the hemicellulose and lignin of the CBS. Mechanical tests showed high dependence of the mechanical properties on the 3D printing raster angle. Tensile strength increased when a raster angle of 0° was used, compared to specimens printed at 90°, due to the load direction. Tensile strength and fracture strain were improved with CBS addition in specimens printed at 90°, and better bonding between adjacent layers was achieved. Electron microscope images identified particle fracture, filler-matrix debonding, and matrix breakage as the central failure mechanisms. These failure mechanisms are attributed to the poor interfacial bonding between the CBS particles and the matrix, which reduced the tensile properties of specimens printed at 0°. On the other hand, the printing process showed that cocoa bean shell particles reduced by 67% the characteristic warping effect of recycled polypropylene during 3D printing, which is advantageous for 3D printing applications of the rPP. Thereby, potential sustainable natural filler composite filaments for 3D printing applications with low density and low cost can be developed, adding value to agro-industrial and plastic wastes.eng
dc.description.abstractLos materiales compuestos a base de rellenos naturales son una alternativa ecológica y potencialmente sostenible a sus homólogos sintéticos o plásticos. El reciclaje de polímeros y el uso de residuos agroindustriales son medidas que ayudan a conseguir una economía circular. Así, este trabajo presenta el desarrollo y caracterización de un filamento para impresión 3D basado en polipropileno reciclado y cáscaras de habas de cacao, que aún no ha sido explorado. Los composites obtenidos fueron caracterizados térmica y físicamente. Además, se realizaron análisis morfológicos, mecánicos y del efecto de alabeo en las muestras impresas en 3D. El análisis térmico mostró una disminución de la estabilidad térmica cuando se añadieron partículas de cáscara de haba de cacao (CBS) debido a su contenido lignocelulósico. Se identificó una reducción tanto en la entalpía de fusión como en el porcentaje de cristalinidad. Esto se debe al aumento de las estructuras amorfas presentes en la hemicelulosa y la lignina del CBS. Los ensayos mecánicos mostraron una gran dependencia de las propiedades mecánicas del ángulo de trama de impresión 3D. La resistencia a la tracción aumentó cuando se utilizó un ángulo de trama de 0°, en comparación con las muestras impresas a 90°, debido a la dirección de la carga. La resistencia a la tracción y la deformación por fractura mejoraron con la adición de CBS en las muestras impresas a 90°, y se consiguió una mejor unión entre las capas adyacentes. Las imágenes de microscopio electrónico identificaron la fractura de partículas, la desvinculación entre el relleno y la matriz y la rotura de la matriz como los principales mecanismos de fallo. Estos mecanismos de fallo se atribuyen a la mala unión interfacial entre las partículas de CBS y la matriz, que redujo las propiedades de tracción de las muestras impresas a 0°. Por otro lado, el proceso de impresión demostró que las partículas de cáscara de haba de cacao reducían en un 67% el efecto de alabeo característico del polipropileno reciclado durante la impresión 3D, lo que resulta ventajoso para las aplicaciones de impresión 3D del rPP. De este modo, pueden desarrollarse filamentos compuestos de relleno natural sostenibles para aplicaciones de impresión 3D con baja densidad y bajo coste, añadiendo valor a los residuos agroindustriales y plásticos.spa
dc.format.extent17 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMultidisciplinary Digital Publishing Institute - MDPIspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2073-4360/13/18/3162spa
dc.titleDevelopment and Characterization of a 3D Printed Cocoa Bean Shell Filled Recycled Polypropylene for Sustainable Compositeseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://doi.org/10.3390/polym13183162
dc.identifier.urlhttps://www.mdpi.com/2073-4360/13/18/3162
dc.publisher.placeSuizaspa
dc.relation.citationendpage17spa
dc.relation.citationissue18spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume13spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalPolymerseng
dc.relation.referencesFaruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]spa
dc.relation.referencesHong, H.; Xiao, R.; Guo, Q.; Liu, H.; Zhang, H. Quantitively Characterizing the Chemical Composition of Tailored Bagasse Fiber and Its Effect on the Thermal and Mechanical Properties of Polylactic Acid-Based Composites. Polymers 2019, 11, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dc.relation.referencesKain, S.; Ecker, J.V.; Haider, A.; Musso, M.; Petutschnigg, A. Effects of the Infill Pattern on Mechanical Properties of Fused Layer Modeling (FLM) 3D Printed Wood/Polylactic Acid (PLA) Composites. Eur. J. Wood Wood Prod. 2020, 78, 65–74. [Google Scholar] [CrossRef]spa
dc.relation.referencesFitzgerald, A.; Proud, W.; Kandemir, A.; Murphy, R.J.; Jesson, D.A.; Trask, R.S.; Hamerton, I.; Longana, M.L. A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery. Sustainability 2021, 13, 1160. [Google Scholar] [CrossRef]spa
dc.relation.referencesCao, C. Sustainability and life assessment of high strength natural fibre composites in construction. In Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 529–544. ISBN 978-0-08-100411-1. [Google Scholar]spa
dc.relation.referencesThe Circular Economy in Detail. Available online: https://www.ellenmacarthurfoundation.org/explore/the-circular-economy-in-detail (accessed on 18 May 2021).spa
dc.relation.referencesCruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer Recycling in an Open-Source Additive Manufacturing Context: Mechanical Issues. Addit. Manuf. 2017, 17, 87–105. [Google Scholar] [CrossRef]spa
dc.relation.referencesPhanisankar, B.S.S.; Vasudeva Rao, N.; Manikanta, J.E. Conversion of Waste Plastic to Fuel Products. Mater. Today Proc. 2020, 33, 5190–5195. [Google Scholar] [CrossRef]spa
dc.relation.references100+ Plastic in the Ocean Statistics & Facts (2020–2021). Available online: https://www.condorferries.co.uk/plastic-in-the-ocean-statistics (accessed on 18 May 2021).spa
dc.relation.referencesPresence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood. EFSA J. 2016, 14, e04501. [CrossRef] [Green Version]spa
dc.relation.referencesSingh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]spa
dc.relation.referencesSadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesEn Tiempos de Pandemia, Producción de Cacao Alcanzó Cifra Record—Fondo Nacional Del Cacao. Available online: http://www.fedecacao.com.co/portal/index.php/es/2015-04-23-20-00-33/1381-en-tiempos-de-pandemia-produccion-de-cacao-alcanzo-cifra-record (accessed on 14 September 2021).spa
dc.relation.referencesGrillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa Bean Shell Waste Valorisation; Extraction from Lab to Pilot-Scale Cavitational Reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef] [PubMed]spa
dc.relation.referencesBarišić, V.; Jozinović, A.; Flanjak, I.; Šubarić, D.; Babić, J.; Miličević, B.; Doko, K.; Ačkar, Đ. Difficulties with Use of Cocoa Bean Shell in Food Production and High Voltage Electrical Discharge as a Possible Solution. Sustainability 2020, 12, 3981. [Google Scholar] [CrossRef]spa
dc.relation.referencesFigueroa, K.H.N.; García, N.V.M.; Vega, R.C. Cocoa By-products. In Food Wastes and By-Products; Campos-Vega, R., Oomah, B.D., Vergara-Castañeda, H.A., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 373–411. ISBN 978-1-119-53410-5. [Google Scholar]spa
dc.relation.referencesHandojo, L.; Triharyogi, H.; Indarto, A. Cocoa Bean Shell Waste as Potential Raw Material for Dietary Fiber Powder. Int. J. Recycl. Org. Waste Agric. 2019, 8, 485–491. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesOkiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa Shell and Its Compounds: Applications in the Food Industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]spa
dc.relation.referencesLong, H.; Wu, Z.; Dong, Q.; Shen, Y.; Zhou, W.; Luo, Y.; Zhang, C.; Dong, X. Mechanical and Thermal Properties of Bamboo Fiber Reinforced Polypropylene/Polylactic Acid Composites for 3D Printing. Polym. Eng. Sci. 2019, 59, E247–E260. [Google Scholar] [CrossRef]spa
dc.relation.referencesSanivada, U.K.; Mármol, G.; Brito, F.P.; Fangueiro, R. PLA Composites Reinforced with Flax and Jute Fibers—A Review of Recent Trends, Processing Parameters and Mechanical Properties. Polymers 2020, 12, 2373. [Google Scholar] [CrossRef]spa
dc.relation.referencesZaaba, N.F.; Ismail, H. Thermoplastic/Natural Filler Composites: A Short Review. J. Phys. Sci. 2019, 30, 81–99. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesMazzanti, V.; Mollica, F.; El Kissi, N. Rheological and Mechanical Characterization of Polypropylene-Based Wood Plastic Composites. Polym. Compos. 2016, 37, 3460–3473. [Google Scholar] [CrossRef]spa
dc.relation.referencesCavus, V. Selected Properties of Mahogany Wood Flour Filled Polypropylene Composites: The Effect of Maleic Anhydride-Grafted Polypropylene (MAPP). BioResources 2020, 15, 2227–2236. [Google Scholar]spa
dc.relation.referencesBocz, K.; Szolnoki, B.; Marosi, A.; Tábi, T.; Wladyka-Przybylak, M.; Marosi, G. Flax Fibre Reinforced PLA/TPS Biocomposites Flame Retarded with Multifunctional Additive System. Polym. Degrad. Stab. 2014, 106, 63–73. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesPuglia, D.; Dominici, F.; Badalotti, M.; Santulli, C.; Kenny, J.M. Tensile, Thermal and Morphological Characterization of Cocoa Bean Shells (CBS)/Polycaprolactone-Based Composites. J. Renew. Mater. 2016, 4, 199–205. [Google Scholar] [CrossRef]spa
dc.relation.referencesPapadopoulou, E.L.; Paul, U.C.; Tran, T.N.; Suarato, G.; Ceseracciu, L.; Marras, S.; d’Arcy, R.; Athanassiou, A. Sustainable Active Food Packaging from Poly(Lactic Acid) and Cocoa Bean Shells. ACS Appl. Mater. Interfaces 2019, 11, 31317–31327. [Google Scholar] [CrossRef]spa
dc.relation.referencesTran, T.N.; Bayer, I.S.; Heredia-Guerrero, J.A.; Frugone, M.; Lagomarsino, M.; Maggio, F.; Athanassiou, A. Cocoa Shell Waste Biofilaments for 3D Printing Applications. Macromol. Mater. Eng. 2017, 302, 1–10. [Google Scholar] [CrossRef]spa
dc.relation.referencesDespeisse, M.; Baumers, M.; Brown, P.; Charnley, F.; Ford, S.J.; Garmulewicz, A.; Knowles, S.; Minshall, T.H.W.; Mortara, L.; Reed-Tsochas, F.P.; et al. Unlocking Value for a Circular Economy through 3D Printing: A Research Agenda. Technol. Forecast. Soc. Chang. 2017, 115, 75–84. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesTaddese, G.; Durieux, S.; Duc, E. Sustainability Performance Indicators for Additive Manufacturing: A Literature Review Based on Product Life Cycle Studies. Int. J. Adv. Manuf. Technol. 2020, 107, 3109–3134. [Google Scholar] [CrossRef]spa
dc.relation.referencesLiu, Z.; Jiang, Q.; Zhang, Y.; Li, T.; Zhang, H.-C. Sustainability of 3D Printing: A Critical Review and Recommendations. Am. Soc. Mech. Eng. Digit. Collect. 2016. [Google Scholar] [CrossRef]spa
dc.relation.referencesShanmugam, V.; Das, O.; Neisiany, R.E.; Babu, K.; Singh, S.; Hedenqvist, M.S.; Berto, F.; Ramakrishna, S. Polymer Recycling in Additive Manufacturing: An Opportunity for the Circular Economy. Mater. Circ. Econ. 2020, 2, 11. [Google Scholar] [CrossRef]spa
dc.relation.referencesTao, Y.; Wang, H.; Li, Z.; Li, P.; Shi, S.Q. Development and Application Ofwood Flour-Filled Polylactic Acid Composite Filament for 3d Printing. Materials 2017, 10, 339. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesWickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef]spa
dc.relation.referencesLe Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R.; Castro, M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. Mater. Des. 2020, 194, 108911. [Google Scholar] [CrossRef]spa
dc.relation.referencesVelu, R.; Raspall, F.; Singamneni, S. 3D Printing Technologies and Composite Materials for Structural Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-102177-4. [Google Scholar]spa
dc.relation.referencesLiu, J.; Sun, L.; Xu, W.; Wang, Q.; Yu, S.; Sun, J. Current Advances and Future Perspectives of 3D Printing Natural-Derived Biopolymers. Carbohydr. Polym. 2019, 207, 297–316. [Google Scholar] [CrossRef]spa
dc.relation.referencesYang, T.-C.; Yeh, C.-H. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed. Polymers 2020, 12, 1334. [Google Scholar] [CrossRef]spa
dc.relation.referencesASTM International. F2792-12a—Standard Terminology for Additive Manufacturing Technologies. Rapid Manuf. Assoc. 2013, 10–12. [Google Scholar] [CrossRef]spa
dc.relation.referencesMazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesStoof, D.; Pickering, K. Sustainable Composite Fused Deposition Modelling Filament Using Recycled Pre-Consumer Polypropylene. Compos. Part B Eng. 2018, 135, 110–118. [Google Scholar] [CrossRef]spa
dc.relation.referencesAhmed, W.; Alnajjar, F.; Zaneldin, E.; Al-Marzouqi, A.H.; Gochoo, M.; Khalid, S. Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. Materials 2020, 13, 4065. [Google Scholar] [CrossRef] [PubMed]spa
dc.relation.referencesMorales, M.A.; Porras, A.; Maranon, A.; Hernandez, C. Development and Characterization of a 3D Printed Cocoa Bean Shell and Recycled Polypropylene Sustainable Composite. In Proceedings of the ICNF2021—5th International Conference on Natural Fibers, Online, 17–19 May 2021. [Google Scholar]spa
dc.relation.referencesASTM E11-17, Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves; ASTM International: West Conshohocken, PA, USA, 2017.spa
dc.relation.referencesAlghyamah, A.A.; Yagoub Elnour, A.; Shaikh, H.; Haider, S.; Manjaly Poulose, A.; Al-Zahrani, S.M.; Almasry, W.A.; Young Park, S. Biochar/Polypropylene Composites: A Study on the Effect of Pyrolysis Temperature on Crystallization Kinetics, Crystalline Structure, and Thermal Stability. J. King Saud Univ.-Sci. 2021, 33, 101409. [Google Scholar] [CrossRef]spa
dc.relation.referencesLanyi, F.J.; Wenzke, N.; Kaschta, J.; Schubert, D.W. On the Determination of the Enthalpy of Fusion of A-Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X-Ray Diffraction, and Fourier-Transform Infrared Spectroscopy: An Old Story Revisited. Adv. Eng. Mater. 2020, 22, 1900796. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesWu, W.; Ye, W.; Wu, Z.; Geng, P.; Wang, Y.; Zhao, J. Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials 2017, 10, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dc.relation.referencesASTM E111-17, Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus; ASTM International: West Conshohocken, PA, USA, 2017; Available online: www.astm.org (accessed on 14 September 2021).spa
dc.relation.referencesMontgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley: New York, NY, USA, 2012; ISBN 978-1-118-14692-7. [Google Scholar]spa
dc.relation.referencesAsim, M.; Paridah, M.T.; Chandrasekar, M.; Shahroze, R.M.; Jawaid, M.; Nasir, M.; Siakeng, R. Thermal Stability of Natural Fibers and Their Polymer Composites. Iran. Polym. J. 2020, 29, 625–648. [Google Scholar] [CrossRef]spa
dc.relation.referencesMajeed, K.; Ahmed, A.; Abu Bakar, M.S.; Indra Mahlia, T.M.; Saba, N.; Hassan, A.; Jawaid, M.; Hussain, M.; Iqbal, J.; Ali, Z. Mechanical and Thermal Properties of Montmorillonite-Reinforced Polypropylene/Rice Husk Hybrid Nanocomposites. Polymers 2019, 11, 1557. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesZanini, N.C.; Barbosa, R.F.; de Souza, A.G.; Rosa, D.S.; Mulinari, D.R. Revaluation of Australian Palm Residues in Polypropylene Composites: Statistical Influence of Fiber Treatment. J. Compos. Mater. 2021, 55, 813–826. [Google Scholar] [CrossRef]spa
dc.relation.referencesHassan, T.; Jamshaid, H.; Mishra, R.; Khan, M.Q.; Petru, M.; Novak, J.; Choteborsky, R.; Hromasova, M. Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste. Polymers 2020, 12, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dc.relation.referencesBeltrán, A.; Valente, A.J.M.; Jiménez, A.; Garrigós, M.C. Characterization of Poly(ε-Caprolactone)-Based Nanocomposites Containing Hydroxytyrosol for Active Food Packaging. J. Agric. Food Chem. 2014, 62, 2244–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dc.relation.referencesPorras, A.; Maranon, A.; Ashcroft, I.A. Thermo-Mechanical Characterization of Manicaria Saccifera Natural Fabric Reinforced Poly-Lactic Acid Composite Lamina. Compos. Part Appl. Sci. Manuf. 2016, 81, 105–110. [Google Scholar] [CrossRef]spa
dc.relation.referencesAtiqah, A.; Jawaid, M.; Sapuan, S.M.; Ishak, M.R.; Alothman, O.Y. Thermal Properties of Sugar Palm/Glass Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. Compos. Struct. 2018, 202, 954–958. [Google Scholar] [CrossRef]spa
dc.relation.referencesSh. Al-Otaibi, M.; Alothman, O.Y.; Alrashed, M.M.; Anis, A.; Naveen, J.; Jawaid, M. Characterization of Date Palm Fiber-Reinforced Different Polypropylene Matrices. Polymers 2020, 12, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dc.relation.referencesPereira, A.L.; Banea, M.D.; Neto, J.S.S.; Cavalcanti, D.K.K. Mechanical and Thermal Characterization of Natural Intralaminar Hybrid Composites Based on Sisal. Polymers 2020, 12, 866. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesMustafa, W.A.; Saidi, S.A.; Zainal, M.; Santiagoo, R. Experimental Study of Composites Material Based on Thermal Analysis. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 43, 37–44. [Google Scholar]spa
dc.relation.referencesAtagur, M.; Seki, Y.; Pasaoglu, Y.; Sever, K.; Seki, Y.; Sarikanat, M.; Altay, L. Mechanical and Thermal Properties of Carpinas Betulus Fiber Filled Polypropylene Composites. Polym. Compos. 2020, 41, 1925–1935. [Google Scholar] [CrossRef]spa
dc.relation.referencesHidalgo-Salazar, M.A.; Muñoz, M.F.; Mina, J.H. Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers. Int. J. Polym. Sci. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesXia, L.; Zhang, C.; Wang, A.; Wang, Y.; Xu, W. Morphologies and Properties of Juncus Effusus Fiber after Alkali Treatment. Cellulose 2020, 27, 1909–1920. [Google Scholar] [CrossRef]spa
dc.relation.referencesTorres-Canas, F.; Bentaleb, A.; Föllmer, M.; Roman, J.; Neri, W.; Ly, I.; Derré, A.; Poulin, P. Improved Structure and Highly Conductive Lignin-Carbon Fibers through Graphene Oxide Liquid Crystal. Carbon 2020, 163, 120–127. [Google Scholar] [CrossRef]spa
dc.relation.referencesChatterjee, A.; Kumar, S.; Singh, H. Tensile Strength and Thermal Behavior of Jute Fibre Reinforced Polypropylene Laminate Composite. Compos. Commun. 2020, 22, 100483. [Google Scholar] [CrossRef]spa
dc.relation.referencesTarrés, Q.; Melbø, J.K.; Delgado-Aguilar, M.; Espinach, F.X.; Mutjé, P.; Chinga-Carrasco, G. Bio-Polyethylene Reinforced with Thermomechanical Pulp Fibers: Mechanical and Micromechanical Characterization and Its Application in 3D-Printing by Fused Deposition Modelling. Compos. Part B Eng. 2018, 153, 70–77. [Google Scholar] [CrossRef]spa
dc.relation.referencesSiengchin, S. Potential Use of “green” Composites in Automotive Applications. Express Polym. Lett. 2017, 11, 600. [Google Scholar] [CrossRef]spa
dc.relation.referencesRachini, A.; Mougin, G.; Delalande, S.; Charmeau, J.-Y.; Barrès, C.; Fleury, E. Hemp Fibers/Polypropylene Composites by Reactive Compounding: Improvement of Physical Properties Promoted by Selective Coupling Chemistry. Polym. Degrad. Stab. 2012, 97, 1988–1995. [Google Scholar] [CrossRef]spa
dc.relation.referencesKhalili, P.; Liu, X.; Zhao, Z.; Blinzler, B. Fully Biodegradable Composites: Thermal, Flammability, Moisture Absorption and Mechanical Properties of Natural Fibre-Reinforced Composites with Nano-Hydroxyapatite. Materials 2019, 12, 1145. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesThakur, V.K.; Singha, A.S.; Thakur, M.K. Green Composites from Natural Fibers: Mechanical and Chemical Aging Properties. Int. J. Polym. Anal. Charact. 2012, 17, 401–407. [Google Scholar] [CrossRef]spa
dc.relation.referencesThakur, V.K.; Singha, A.S. Physicochemical and Mechanical Behavior of Cellulosic Pine Needle-Based Biocomposites. Int. J. Polym. Anal. Charact. 2011, 16, 390–398. [Google Scholar] [CrossRef]spa
dc.relation.referencesVaes, D.; Van Puyvelde, P. Semi-Crystalline Feedstock for Filament-Based 3D Printing of Polymers. Prog. Polym. Sci. 2021, 101411. [Google Scholar] [CrossRef]spa
dc.relation.referencesChong, S.; Pan, G.-T.; Khalid, M.; Yang, T.C.-K.; Hung, S.-T.; Huang, C.-M. Physical Characterization and Pre-Assessment of Recycled High-Density Polyethylene as 3D Printing Material. J. Polym. Environ. 2017, 25, 136–145. [Google Scholar] [CrossRef]spa
dc.relation.referencesSpoerk, M.; Sapkota, J.; Weingrill, G.; Fischinger, T.; Arbeiter, F.; Holzer, C. Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturing. Macromol. Mater. Eng. 2017, 302, 1700143. [Google Scholar] [CrossRef]spa
dc.relation.referencesPenumakala, P.K.; Santo, J.; Thomas, A. A Critical Review on the Fused Deposition Modeling of Thermoplastic Polymer Composites. Compos. Part B Eng. 2020, 201, 108336. [Google Scholar] [CrossRef]spa
dc.relation.referencesPickering, K.; Stoof, D. Sustainable Composite Fused Deposition Modelling Filament Using Post-Consumer Recycled Polypropylene. J. Compos. Sci. 2017, 1, 17. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesLe Duigou, A.; Chabaud, G.; Matsuzaki, R.; Castro, M. Tailoring the Mechanical Properties of 3D-Printed Continuous Flax/PLA Biocomposites by Controlling the Slicing Parameters. Compos. Part B Eng. 2020, 203, 108474. [Google Scholar] [CrossRef]spa
dc.relation.referencesThomason, J.L. Why Are Natural Fibres Failing to Deliver On Composite Performance? In Proceedings of the International Conference on Composite Materials (ICCM), Esinburgh, UK, 27–31 July 2009. [Google Scholar]spa
dc.relation.referencesRajendran Royan, N.R.; Leong, J.S.; Chan, W.N.; Tan, J.R.; Shamsuddin, Z.S.B. Current State and Challenges of Natural Fibre-Reinforced Polymer Composites as Feeder in FDM-Based 3D Printing. Polymers 2021, 13, 2289. [Google Scholar] [CrossRef]spa
dc.relation.referencesSong, X.; He, W.; Han, X.; Qin, H. Fused Deposition Modeling of Poly (Lactic Acid)/Nutshells Composite Filaments: Effect of Alkali Treatment. J. Polym. Environ. 2020, 28, 3139–3152. [Google Scholar] [CrossRef]spa
dc.relation.referencesMorales, M.A.; Atencio Martinez, C.L.; Maranon, A.; Hernandez, C.; Michaud, V.; Porras, A. Development and Characterization of Rice Husk and Recycled Polypropylene Composite Filaments for 3D Printing. Polymers 2021, 13, 1067. [Google Scholar] [CrossRef]spa
dc.relation.referencesTsou, C.H.; Yao, W.H.; Wu, C.S.; Tsou, C.Y.; Hung, W.S.; Chen, J.C.; Guo, J.; Yuan, S.; Wen, E.; Wang, R.Y.; et al. Preparation and Characterization of Renewable Composites from Polylactide and Rice Husk for 3D Printing Applications. J. Polym. Res. 2019, 26, 227. [Google Scholar] [CrossRef]spa
dc.relation.referencesGholampour, A.; Ozbakkaloglu, T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]spa
dc.relation.referencesElanchezhian, C.; VijayaRamnath, B. Review on Mechanical Properties of Natural Fiber Composites. Mater. Today Proc. 2018, 5, 1785–1790. [Google Scholar] [CrossRef]spa
dc.relation.referencesDeb, D.; Jafferson, J.M. Natural Fibers Reinforced FDM 3D Printing Filaments. Mater. Today Proc. 2021, S2214785321015170. [Google Scholar] [CrossRef]spa
dc.relation.referencesFuentes, C.A.; Brughmans, G.; Tran, L.Q.N.; Dupont-Gillain, C.; Verpoest, I.; Van Vuure, A.W. Mechanical Behaviour and Practical Adhesion at a Bamboo Composite Interface: Physical Adhesion and Mechanical Interlocking. Compos. Sci. Technol. 2015, 109, 40–47. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesvan Hooy, T.; Srinivas, V.; Auhl, D.; Harings, J. Molecular Structure and Design of Thermoplastic Polymers for 3D Printing. Available online: https://www.zuyd.nl/binaries/content/assets/zuyd/onderzoek/interviews--artikelen/material-sciences_research-paper_3d-fab-print.pdf (accessed on 14 September 2021).spa
dc.relation.referencesBalakrishnan, P.; John, M.J.; Pothen, L.; Sreekala, M.S.; Thomas, S. 12—Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Rana, S., Fangueiro, R., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 365–383. ISBN 978-0-08-100939-0. [Google Scholar]spa
dc.relation.referencesThyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]spa
dc.relation.referencesBera, T.; Mohanta, N.; Prakash, V.; Pradhan, S.; Acharya, S.K. Moisture Absorption and Thickness Swelling Behaviour of Luffa Fibre/Epoxy Composite. J. Reinf. Plast. Compos. 2019, 38, 923–937. [Google Scholar] [CrossRef]spa
dc.relation.referencesSullins, T.; Pillay, S.; Komus, A.; Ning, H. Hemp Fiber Reinforced Polypropylene Composites: The Effects of Material Treatments. Compos. Part B Eng. 2017, 114, 15–22. [Google Scholar] [CrossRef] [Green Version]spa
dc.relation.referencesVarghese, A.M.; Mittal, V. Surface modification of natural fibers. In Biodegradable and Biocompatible Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–155. ISBN 978-0-08-100970-3. [Google Scholar]spa
dc.relation.referencesBartos, A.; Utomo, B.P.; Kanyar, B.; Anggono, J.; Soetaredjo, F.E.; Móczó, J.; Pukánszky, B. Reinforcement of Polypropylene with Alkali-Treated Sugarcane Bagasse Fibers: Mechanism and Consequences. Compos. Sci. Technol. 2020, 200, 108428. [Google Scholar] [CrossRef]spa
dc.relation.referencesAlzebdeh, K.I.; Nassar, M.M.A.; Arunachalam, R. Effect of Fabrication Parameters on Strength of Natural Fiber Polypropylene Composites: Statistical Assessment. Measurement 2019, 146, 195–207. [Google Scholar] [CrossRef]spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalNatural filled compositeseng
dc.subject.proposal3D printingeng
dc.subject.proposalFused filament fabricationeng
dc.subject.proposalCocoa bean shelleng
dc.subject.proposalRecycled polypropyleneeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/