Show simple item record

dc.contributor.authorAbellán García, Joaquín
dc.contributor.authorDSánchez Díaz, Jairo A.
dc.contributor.authorOspina Becerra, Victoria Eugenia
dc.date.accessioned2024-07-05T21:19:53Z
dc.date.available2024-07-05T21:19:53Z
dc.date.issued2021
dc.identifier.issn2116-7214spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3147
dc.description.abstractUltra-high-performance fibre reinforced concrete (UHPFRC) is an advanced construction material that provides new opportunities in the future of the construction industry around the world. Among those new applications, rehabilitation, and seismic retrofitting of existing damaged or non-ductile concrete structures can be highlighted. The main objective of this paper is to optimise the hybrid blend of fibres that allows a previously optimised eco-friendly ultra-high performance cementitious paste to achieve the ductility requirements for seismic retrofitting applications at lower costs. To meet this goal, two artificial neural network models (ANNs) were created to predict the energy absorption capacity (g) and maximum post-cracking strain (epc). A total of 50 own experimental campaign data added to 550 published works throughout the world data were used for training purposes by using the R-code language. Once the models were trained and validated, a multi-objective optimisation was used to select the combination of fibres that achieved the limit values of g 50kJ/m3 and epc 0.3% considering cost constraints. The experimentally validated results indicated that the adequate blend of high strength steel micro-fibres and hooked end normal strength steel fibres fulfil the threshold values at a lower cost.eng
dc.description.abstractEl hormigón reforzado con fibra de ultra alto rendimiento (UHPFRC) es un material de construcción avanzado que ofrece nuevas oportunidades en el futuro de la industria de la construcción en todo el mundo. Entre esas nuevas aplicaciones se pueden destacar la rehabilitación y la adaptación sísmica de estructuras de hormigón existentes dañadas o no dúctiles. El objetivo principal de este artículo es optimizar la mezcla híbrida de fibras que permite que una pasta cementosa de ultra alto rendimiento, previamente optimizada y ecológica, alcance los requisitos de ductilidad para aplicaciones de modernización sísmica a costos más bajos. Para lograr este objetivo, se crearon dos modelos de redes neuronales artificiales (RNA) para predecir la capacidad de absorción de energía (g) y la deformación máxima post-fisura (epc). Un total de 50 datos de campañas experimentales propias sumados a 550 datos de trabajos publicados en todo el mundo se utilizaron con fines de capacitación mediante el uso del lenguaje R-code. Una vez entrenados y validados los modelos, se utilizó una optimización multiobjetivo para seleccionar la combinación de fibras que alcanzó los valores límite de g 50kJ/m3 y epc 0,3% considerando restricciones de costos. Los resultados validados experimentalmente indicaron que la combinación adecuada de microfibras de acero de alta resistencia y fibras de acero de resistencia normal con extremos en forma de gancho cumple con los valores umbral a un costo menor.spa
dc.format.extent28 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTaylor & Francisspa
dc.sourcehttps://www.tandfonline.com/action/journalInformation?journalCode=tece20spa
dc.titleNeural network-based optimization of fibres for seismic retrofitting applications of UHPFRCeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupCTG - Informáticaspa
dc.identifier.eissn2116-7214spa
dc.identifier.instnameUniversidad Escuela Colombiana de Ingeniería Julio Garavitospa
dc.identifier.reponameRepositorio Digitalspa
dc.identifier.repourlhttps://repositorio.escuelaing.edu.co/spa
dc.publisher.placeReino Unidospa
dc.relation.citationeditionNo. 13 Vol. 26 2022spa
dc.relation.citationendpage6333spa
dc.relation.citationissue13spa
dc.relation.citationstartpage6305spa
dc.relation.citationvolume26spa
dc.relation.ispartofjournalEuropean journal of environmental and civil engineeringeng
dc.relation.referencesAbbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271–295. https://doi.org/10.1007/s40069-016-0157-4spa
dc.relation.referencesAbdulkareem, O. M., Ben Fraj, A., Bouasker, M., & Khelidj, A. (2018). Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC. Construction and Building Materials, 169, 567–577. https://doi.org/10.1016/j.conbuildmat.2018.02.214spa
dc.relation.referencesAbellan, J., Fernandez, J., Torres, N., & Nu~ nez, A. (2020a). Development of cost-efficient UHPC with local materials in Colombia. In Proceedings of Hipermat 2020- 5th International Symposium on UHPC and Nanotechnology Construction Materials (pp. 97–98). Kassel University Press.spa
dc.relation.referencesAbellan, J., Fernandez, J., Torres, N., & Nu~ nez, A. (2020b). Statistical optimization of ultra-high-performance glass concrete. ACI Materials Journal, 117, 243–254. https://doi.org/10.14359/51720292spa
dc.relation.referencesAbellan, J., Nu~ nez, A., & Arango, S. (2020). Pedestrian bridge of UNAL in Manizales: A new UPHFRC application in the Colombian building market. In: Proceedings of Hipermat 2020- 5th International Symposium on UHPC Nanotechnology Construction (pp. 43–44). Kassel University Press.spa
dc.relation.referencesAbellan, J., Torres, N., Nu~ nez, A., & Fernandez, J. (2018). Ultra high preformance fiber reinforced concrete: State of the art, applications and possibilities into the Latin American market. In: XXXVIII Jornadas Sudamericanas de Ingenieria Estructural, Lima, Peru.spa
dc.relation.referencesAbellan, J., Torres, N., Nu~ nez, A., & Fernandez, J. (2018). Influencia del exponente de Fuller, la relacion agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, In: IV Congr. Int. Ing. Civ., Havana, Cuba.spa
dc.relation.referencesAbellan-Garcıa, J. (2020a). Comparison of artificial intelligence and multivariate regression in modeling the flexural behavior of UHPFRC. Dyna, 87, 239–248. https://doi.org/10.15446/dyna.v87n214.86172.spa
dc.relation.referencesAbellan-Garcıa, J. (2020b). Dosage optimization and seismic retrofitting applications of UltraHighPerformance Fiber Reinforced Concrete (UHPFRC). PhD Thesis. Universidad Politecnica de Madrid.spa
dc.relation.referencesAbellan-Garcıa, J. (2020c). Four-layer perceptron approach for strength prediction of UHPC. Construction and Building Materials, 256, 119465. https://doi.org/10.1016/j.conbuildmat.2020.119465spa
dc.relation.referencesAbellan-Garcıa, J. (2021). K-fold validation neural network approach for predicting the one-day compressive strength of UHPC. Advances in Civil Engineering Materials, 10(1), 20200055. https://doi.org/10.1520/ ACEM20200055spa
dc.relation.referencesAbellan-Garcıa, J., Fernandez-Gomez, J. A., Torres-Castellanos, N., & Nu~ nez-Lopez, A. M. (2020). Machine learning prediction of flexural behavior of UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martı-Vargas, & J. Navarro-Gregori (Eds.), Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020, RILEM Bookseries (pp. 570–583). Springer Nature Switzerland AG https://doi.org/10.1007/978-3-030-58482-5_ 52 .spa
dc.relation.referencesAbellan-Garcıa, J., Fernandez-Gomez, J., & Torres-Castellanos, N. (2020). Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. European Journal of Environmental and Civil Engineering,1–25. https://doi.org/10.1080/19648189.2020.1762749spa
dc.relation.referencesAbellan-Garcıa, J., Fernandez-Gomez, J., Torres-Castellanos, N., & Nu~ nez-Lopez, A. (2021). Tensile behavior of normal strength steel fiber green UHPFRC. ACI Materials Journal, 118, 127–138. https://doi.org/10. 14359/51725992spa
dc.relation.referencesAbellan-Garcıa, J., & Guzman-Guzman, J. S. (2021). Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications. Construction and Building Materials, 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021.122869spa
dc.relation.referencesAbellan-Garcıa, J., Guzman-Guzman, J. S., Sanchez-Dıaz, J. A., & Rojas-Grillo, J. (2021). Experimental validation of artificial intelligence model for the energy absorption capacity of UHPFRC. Dyna, 88, 150–159. https://doi.org/10.15446/dyna.v88n217.spa
dc.relation.referencesAbellan-Garcıa, J., Nu~ nez-Lopez, A., & Arango-Campo, S. (2020). Pedestrian bridge over Las Vegas Avenue in Medellın. First Latin American infrastructure in UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martı-Vargas, & J. Navarro-Gregori (Eds.), Fiber Reinforced Concrete: Omprovements and Innovations, BEFIB 2020, RILEM Bookseries (pp. 864–872). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-03058482-5_76.spa
dc.relation.referencesAbellan-Garcıa, J., Nu~ nez-Lopez, A., Torres-Castellanos, N., & Fernandez-Gomez, J. (2019). Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. Dyna, 86, 84–92. https://doi.org/ 10.15446/dyna.v86n211.79596spa
dc.relation.referencesAbellan-Garcıa, J., Nu~ nez-Lopez, A., Torres-Castellanos, N., & Fernandez-Gomez, J. (2020). Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder. Dyna, 87, 42–51. https://doi.org/10.15446/dyna.v87n213.82655.spa
dc.relation.referencesAbellan-Garcia, J., Santofimo-Vargas, M. A., & Torres-Castellanos, N. (2020). Analysis of metakaolin as partial substitution of ordinary Portland cement in Reactive Powder Concrete. Advances in Civil Engineering Matrials, 9, 368–386. https://doi.org/10.1520/ACEM20190224spa
dc.relation.referencesAbellan-Garcıa, J., Torres-Castellanos, N., Fernandez-Gomez, J. A., & Nu~ nez-Lopez, A. M. (2021). Ultra-highperformance concrete with local high unburned carbon fly ash. Dyna, 88, 38–47. https://doi.org/10. 15446/dyna.v88n216.89234.spa
dc.relation.referencesACI Committe 239R, (2018). ACI– 239 Committee in Ultra-High Performance Concrete, ACI, Toronto. Acker, P., & Behloul, M. (2004). Ductal technology: A large spectrum of properties, a wide range of applications. In: M. Fr€ ohlich & S. Piotrowski (Eds.), Proc. Int. Symp. Ultra High Perform. Concr. (pp. 11–24). Kassel University.spa
dc.relation.referencesAdeli, H. (2001). Neural networks in civil engineering: 1989 2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. https://doi.org/10.1111/0885-9507.00219spa
dc.relation.referencesAderaw, M., Muse, S., & Abiero, Z. C. (2018). Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Construction and Building Materials, 190, 517–525. https://doi.org/10.1016/j.conbuildmat.2018.09.097spa
dc.relation.referencesAlHallaq, A. F., Tayeh, B. A., & Shihada, S. (2017). Investigation of the bond strength between existing concrete substrate and UHPC as a repair material. International Journal of Engineering and Advanced Technology, 6, 210–217.spa
dc.relation.referencesAsociacion Colombiana de IngenierıaSısmica (2010). Reglamento Colombiano de construccionsismo resistente. NSR-10. Asociacion Colombiana de Ingenierıa.spa
dc.relation.referencesAtkinson, A., & Riani, M. (2000). Robust diagnostic regression analysis. Springer US.spa
dc.relation.referencesBracci, J. M., Reinhorn, A. M., & Mander, J. B. (1955). Seismic resistance of reinforced concrete frame structures designed for gravity loads: Performance of structural system. ACI Structural Journal, 92(5), 597–609.spa
dc.relation.referencesByars, E. A., Waldron, P., Dejke, V., & Demis, S. (2001). Durability of FRP in concrete current specifications and a new approach. FRP Compos.spa
dc.relation.referencesCentro de Estudios e Investigaciones Sobre Riesgo. (2005). Escenarios de riesgo y perdidas por terremoto para Bogota. University of Los Andes.spa
dc.relation.referencesChandwani, V., Agrawal, V., & Nagar, R. (2014). Applications of artificial neural networks in modeling compressive strength of concrete: A state of the art review. Advances in Artificial Neural Systems, 2014, 1–2956. https://doi.org/10.1155/2014/629137spa
dc.relation.referencesChandwani, V., Agrawal, V., & Nagar, R. (2015). Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Systems with Applications, 42(2), 885–893. https://doi.org/10.1016/j.eswa.2014.08.048spa
dc.relation.referencesChao, S. (2016). Seismic behavior of ultra-high-performance fiber-reinforced concrete moment frame members [Paper presentation]. International Interactive Symposium on UHPC (pp. 1–10). TOCIEJ-13-147spa
dc.relation.referencesChollet, F., & Allaire, J. J. (2018). Deep learning with R. Manning Publications Co.spa
dc.relation.referencesDagenais, M. A., Massicotte, B., & Boucher-Proulx, G. (2018). Seismic retrofitting of rectangular bridge piers with deficient lap splices using ultrahigh-performance fiber-reinforced concrete. Journal of Bridge Engineering, 23,1–13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001173spa
dc.relation.referencesDe Domenico, D., Impollonia, N., & Ricciardi, G. (2019). Seismic retrofitting of confined masonry-RC buildings: The case study of the university hall of residence in Messina, Italy. IngenierıaSısmica, 36,54–85.spa
dc.relation.referencesDe Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. (1st ed.). CRC Press. https:// doi.org/10.1201/9781482272055spa
dc.relation.referencesDe Larrard, F., & Sedran, T. (2002). Mixture-proportioning of high-performance concrete. Cement and Concrete Research, 32(11), 1699–1704. https://doi.org/10.1016/S0008-8846(02)00861-Xspa
dc.relation.referencesDerringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968spa
dc.relation.referencesDogan, E., & Krstulovic-Opara, N. (2003). Seismic retrofit with continuous slurry-infiltrated mat concrete jackets. ACI Structural Journal, 100, 713-722.spa
dc.relation.referencesEstebon, M. D. (1997). Perceptrons: An associative learning network. Virginia Tech.spa
dc.relation.referencesEveritt, B., & Hothorn, T. (2015). MVA: An introduction to applied multivariate analysis with R. Springer.spa
dc.relation.referencesFunk, J. E. J. E., & Dinger, D. R. (1994). Predictive process control of crowded particulate suspensions: Applied to ceramic manufacturing. Springer Science. https://doi.org/10.1007/978-1-4615-3118-0spa
dc.relation.referencesGarcia, L. E. (2014). Desarrollo de la normativa sismo resistente colombiana en los 30 a~ nos desde su primera expedicion. Revista de Ingenierıa, 41,71–77.spa
dc.relation.referencesGhafari, E. (2012). Optimization of UHPC by adding nanomaterials. In Proceedings of Hipermat 2012, 3rd Int. Symp. UHPC Nanotechnol. Constr. Mater., Kassel Uni, Kassel, Alemania (pp. 71–78).spa
dc.relation.referencesGhafari, E., Bandarabadi, M., Costa, H., & Julio, E. (2015). Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model. Journal of Materials in Civil Engineering, 27(11), 04015017. https://doi.org/10.1061/(ASCE)MT.1943-5533. 0001270spa
dc.relation.referencesGhafari, E., Costa, H., & Julio, E. (2015). Statistical mixture design approach for eco-efficient UHPC. Cement and Concrete Composites, 55,17–25. https://doi.org/10.1016/j.cemconcomp.2014.07.016spa
dc.relation.referencesGhafari, E., Costa, H., Julio, E., Portugal, A., & Dur~ aes, L. (2012). Enhanced durability of ultra high performance concrete by incorporating supplementary cementitious materials. In Second Int. Conf. Microstruct. Durab. Cem. Compos (pp. 11–13).spa
dc.relation.referencesGhafari, E., Costa, H., Nuno, E., & Santos, B. (2014). RSM-based model to predict the performance of selfcompacting UHPC reinforced with hybrid steel micro-fibers. Construction and Building Materials, 66, 375–383. https://doi.org/10.1016/j.conbuildmat.2014.05.064spa
dc.relation.referencesGhafari, E., Costa, H., Nuno, E., Santos, B., Costa, H., & Julio, E. (2015). Critical review on eco-efficient ultra high performance concrete enhanced with nano- materials. Construction and Building Materials, 101, 201–208. https://doi.org/10.1016/j.conbuildmat.2015.10.066spa
dc.relation.referencesGupta, S. (2013). Using artificial neural network to predict the compressive strength of concrete containing nano-silica. Civil Engineering and Architecture, 1(3), 96–102. https://doi.org/10.13189/cea.2013. 010306spa
dc.relation.referencesHaber, Z. B., Munoz, J. F., & Graybeal, B. A. (2017). Field testing of an ultra-high performance concrete overlay. Technical Report. U.S. Department of Transportation. Federal Highway Administration.spa
dc.relation.referencesH€ ardle, W. K., & Simar, L. (2012). Applied multivariate statistical analysis. Springer-Verlag GmbH.spa
dc.relation.referencesHudson Beale, M. (2012). Neural network toolbox user’s guide. MathWorks J.spa
dc.relation.referencesKalny, M., Kvasnicka, V., & Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In E. Fehling, B. Middendorf, & J. Thiemicke (Eds.), Proc. Hipermat 2016- 4th Int. Symp. UHPC Nanotechnol. Constr. Mater. (pp. 147–148). Kassel.spa
dc.relation.referencesKhan, M. I., Al-Osta, M. A., Ahmad, S., & Rahman, M. K. (2018). Seismic behavior of beam-column joints strengthened with ultra-high performance fiber reinforced concrete. Composite Structures, 200, 103–119. https://doi.org/10.1016/j.compstruct.2018.05.080spa
dc.relation.referencesKhashman, A., & Akpinar, P. (2017). ScienceDirect non-destructive prediction of concrete compressive strength using neural networks prediction of concrete compressive strength using neural networks. Procedia Computer Science, 108, 2358–2362. https://doi.org/10.1016/j.procs.2017.05.039spa
dc.relation.referencesKim, D.-J., Naaman, A. E., & El-Tawil, S. (2009). High performance fiber reinforced cement composites with innovative slip hardending twisted steel fibers. International Journal of Concrete Structures and Materials, 3(2), 119–126. https://doi.org/10.4334/IJCSM.2009.3.2.119spa
dc.relation.referencesKim, D. J., Park, S. H., Ryu, G. S., & Koh, K. T. (2011). Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Construction and Building Materials, 25(11), 4144–4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051spa
dc.relation.referencesKou, S. C., & Xing, F. (2012). The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced ultrahigh performance concrete, hindawi publ. Advances in Materials Science and Engineering, 2012,1–8. https://doi.org/10.1155/2012/263243spa
dc.relation.referencesKwon, S., Nishiwaki, T., Kikuta, T., & Mihashi, H. (2014). Development of ultra-high-performance hybrid fiber-reinforced cement-based composites. ACI Materials Journal, 111, 309–318. https://doi.org/10. 14359/51686890spa
dc.relation.referencesLarrard, F. (1994). Optimization of ultra-high performance concrete by the use of a packing model. Cement and Concrete Research, 24, 997–1009.spa
dc.relation.referencesLavorato, D., Bergami, A. V., Nuti, C., Briseghella, B., Xue, J., Tarantino, A. M., Marano, G. C., & Santini, S. (2017). Ultra-high-performance fibre-reinforced concrete jacket for the repair and the seismic retrofitting of Italian and Chinese RC bridges [Paper presentation]. COMPDYN 2017- Proc. 6th Int. Conf. Comput. Methods Struct. Dyn. Earthq. Eng. (Vol. 1, pp. 2149–2160). Eccomas Proceedia. https://doi.org/10.7712/ 120117.5556.18147.spa
dc.relation.referencesMartin-Sanz, H., Chatzi, E., & Br€ uhwiler, E. (2016). The use of ultra high performance fibre reinforced cement-based composites in rehabilitation projects: A review.[Paper presentation] In V. Saouma, J. Bolander, & E. Landis (Eds.), 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. https://doi.org/10.21012/fc9.219spa
dc.relation.referencesMassicotte, B., Dagenais, M.-A., & Lagier, F. (2013). Performance of UHPFRC jackets for the seismic strengthening of bridge piers. RILEM-Fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced (pp. 89–98). Springer.spa
dc.relation.referencesMoriasi, D. N., Arnold, J. G., Liew, M. W V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed in simulations. American Society of Agricultural and Biological Engineers, 50, 885–900.spa
dc.relation.referencesMushgil, H. M., Alani, H. A., & George, L. E. (2015). Comparison between resilient and standard back propagation algorithms efficiency in pattern recognition. International Journal of Scientific and Engineering Research, 6, 773–778.spa
dc.relation.referencesNaaman, A. E., & Reinhardt, H. W. (2007). Proposed classification of HPFRC composites based on their tensile response. Materials and Structures, 39(5), 547–555. https://doi.org/10.1617/s11527-006-9103-2spa
dc.relation.referencesNash, E., & Sutcliffe, V. (1970). River flow forecasting through conceptual models. Part I- A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6spa
dc.relation.referencesPark, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172–184. https://doi.org/10.1016/j. cemconcomp.2011.09.009spa
dc.relation.referencesParra-Montesinos, G., & Wight, J. K. (2000). Seismic behavior, strength and retrofit of RC column-to-steel beam connections. nisee.berkeley.edu. Retrieved from http://nisee.berkeley.edu/elibrary/Text/S37269spa
dc.relation.referencesPrasad, N., Singh, R., & Lal, S. P. (2013). Comparison of back propagation and resilient propagation algorithm for spam classification [Paper presentation]. Proc. Int. Conf. Comput. Intell. Model. Simul. (pp. 29–34). https://doi.org/10.1109/CIMSim.2013.14. IEEE.spa
dc.relation.referencesPyo, S., El-Tawil, S., & Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144–156. https://doi. org/10.1016/j.cemconres.2016.07.003spa
dc.relation.referencesPyo, S., El-Tawil, S., & Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144–156. https://doi. org/10.1016/j.cemconres.2016.07.003spa
dc.relation.referencesRosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519spa
dc.relation.referencesRosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519spa
dc.relation.referencesRuiz-Pinilla, J. C., Pallares, F. J., Gimenez, E., & Calderon, P. A. (2014). Experimental tests on retrofitted RC beam-column joints underdesigned to seismic loads. Engineering Structures, 59, 702–714. https://doi. org/10.1016/j.engstruct.2013.11.008spa
dc.relation.referencesRyu, G. S., Kim, S. H., Ahn, G. H., & Koh, K. T. (2012). Evaluation of the direct tensile behavioral characteristics of UHPC using twisted steel fibers. Advanced Materials Research, 602–604, 96–101. https://doi.org/ 10.4028/www.scientific.net/AMR.602-604.96spa
dc.relation.referencesRyu, G. S., Kim, S. H., Ahn, G. H., & Koh, K. T. (2012). Evaluation of the direct tensile behavioral characteristics of UHPC using twisted steel fibers. Advanced Materials Research, 602–604, 96–101. https://doi.org/ 10.4028/www.scientific.net/AMR.602-604.96spa
dc.relation.referencesSchmidt, C., & Schmidt, M. (2012). Whitetopping’ of asphalt and concrete pavements with thin layers of ultra-high-performance concrete- Construction and economic efficiency. In: M. Fr€ ohlich & S. Piotrowski (Eds.), 3rd Int. Symp. UHPC Nanotechnol. High Perform. Constr. Mater. (pp. 921–927). Kassel University.spa
dc.relation.referencesShaaban, M., & Ahmed, S. (2016). Development of ultra-high performance concrete jointed precast decks and concrete piles in integral abutment bridges. In First Int. Symp. Jointless Sustain. Bridg., Fujian, China. https://www.academia.edu/25363851/development_of_ultra-high_performance_concrete_for_ jointed_precast_decks_and_concrete_piles_in_integral_abutment_bridges.spa
dc.relation.referencesSoliman, N. A., & Tagnit-Hamou, A. (2017a). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. https://doi.org/10.1016/ j.conbuildmat.2017.02.084spa
dc.relation.referencesSoliman, N. A., & Tagnit-Hamou, A. (2017b). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243–252. https://doi.org/10.1016/j.conbuildmat.2017.03.187spa
dc.relation.referencesSoliman, N. A., & Tagnit-Hamou, A. (2017c). Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete. ACI Materials Journal, 114, 847–858. https://doi.org/10. 14359/51701001spa
dc.relation.referencesSoranakom, C., & Mobasher, B. (2008). Correlation of tensile and flexural responses of strain softening and strain hardening cement composites. Cement Concr. Compos. 30(6), 465–477. https://doi.org/10.1016/j. cemconcomp.2008.01.007spa
dc.relation.referencesSrinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall– runoff models. Applied Soft Computing, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02. 002spa
dc.relation.referencesTaghaddos, H., Mahmoudzadeh, F., Pourmoghaddam, A., & Shekarchizadeh, M. (2004). Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system. In: Proc. Int. Symp. Ultra High Perform (pp. 273–284). Kassel University Press.spa
dc.relation.referencesTagnit-Hamou, A., Soliman, N. A., & Omran, A. (2016). Green ultra- high- performance glass concrete. First Int. Interact. Symp. UHPC– 2016, 3,1–10.spa
dc.relation.referencesTayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Voo, Y. L. (2013). Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation- A review. Procedia Engineering, 54, 525–538. https://doi. org/10.1016/j.proeng.2013.03.048spa
dc.relation.referencesVan Tuan, N., Ye, G., van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046spa
dc.relation.referencesVasconez, R. M., Naaman, A. E., & Wight, J. K. (1998). Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading. PCI Journal, 43(6), 58–71. https://doi.org/10.15554/pcij.11011998. 58.71spa
dc.relation.referencesVega Vargas, C. J. (2015). Comportamiento dinamico de muros de mamposterıa no estructural reforzados mediante polımeros reforzados con fibra de carbono. CFRP, Escuela Colombiana de Ingenierıa Julio Garavito.spa
dc.relation.referencesWille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC ) under direct tensile loading. Cement and Concrete Composites, 48, 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015spa
dc.relation.referencesWille, K., Kim, D., & Naaman, A. E. (2011). Strain hardening UHP-FRC with low fiber contents. Materials and Structures 44, 538–598. https://doi.org/10.1617/s11527-010-9650-4spa
dc.relation.referencesYokota, H., Rokugo, K., & Sakata, N. (2008). JSCE-2008 Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). Japan Society of Civil Engineers. https://doi.org/10.1016/j.dci.2010.01.003.spa
dc.relation.referencesYoo, D. Y., & Kim, M. J. (2019). High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Construction and Building Materials, 209, 354–363. https://doi.org/10.1016/j.conbuildmat.2019.03.096spa
dc.relation.referencesYu, R., Spiesz, P., & Brouwers, H. J. H. (2015). Development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards an efficient utilization of binders and fibres. Construction and Building Materials, 79, 273–282. https://doi.org/10.1016/j.conbuildmat.2015.01.050spa
dc.relation.referencesZhang, J., Zhao, Y., & Li, H. (2017). Experimental investigation and prediction of compressive strength of ultra-high performance concrete (UHPC) containing supplementary cementitious materials, Hindawi. Advances in Materials Science and Engineering, 2017,1–525. https://doi.org/10.1155/2017/4563164spa
dc.relation.referencesZhang, J., Zhao, Y., & Li, H. (2017). Experimental investigation and prediction of compressive strength of ultra-high performance concrete containing supplementary cementitious materials. Advances in Materials Science and Engineering, 2017, 4563164. https://doi.org/10.1155/2017/4563164spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcConstrucción
dc.subject.armarcBuilding
dc.subject.armarcHormigón
dc.subject.armarcConcrete
dc.subject.armarcDiseño sismorresistente
dc.subject.armarcEarthquake resistant design
dc.subject.proposalUHPFRCeng
dc.subject.proposalArtificial neural networkseng
dc.subject.proposalRedes neuronales artificialesspa
dc.subject.proposalDuctilityeng
dc.subject.proposalDuctilidadspa
dc.subject.proposalMultiobjective optimisationeng
dc.subject.proposaloptimización multiobjetivospa
dc.subject.proposalEnergy absorption capacityeng
dc.subject.proposalcapacidad de absorción de energíaspa
dc.subject.proposalseismic retrofitting applicationseng
dc.subject.proposalAplicaciones de modernización sísmicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record