Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales, M. Alejandro
dc.contributor.authorGiraldo, Francisco
dc.contributor.authorEchavarria Garcia, Aida Milena
dc.contributor.authorBolivar, Francisco J.
dc.contributor.authorBejarano, Gilberto
dc.date.accessioned2024-07-09T15:15:31Z
dc.date.available2024-07-09T15:15:31Z
dc.date.issued2022
dc.identifier.issn0257-8972spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3151
dc.description.abstractBy DC magnetron sputtering ReN and multilayers of TiAlN/ReN films were produced. The coatings were deposited onto high-speed steel (AISI M2) samples and silicon wafers. Analysis of the microstructure and phase composition showed that the ReN monolayer, which was the same as the coating used subsequently for the manufacture of the multilayers of TiAlN/ReN, possessed a cubic crystalline structure. The ReN coating had preferential columnar growth in the direction of the plane (111) and presented precipitates of the rhenium oxides ReO2 and ReO3. A detailed study of the electrochemical behavior and corrosion resistance of the coated steel substrate as a function of the number of TiAlN/ReN bilayers was carried out using electrochemical impedance spectroscopy and polarization measurements. The coatings exhibited a relative high hardness and Young's Modulus, and a better performance against corrosion in aqueous media rich in chlorine ions when the bilayer number and period were 5 and 221.2 nm, respectively. It was observed that the formation of rhenium oxide particles influences the electrochemical behavior of coatings.eng
dc.description.abstractMediante pulverización catódica con magnetrón de corriente continua se obtuvieron películas de ReN y multicapas de TiAlN/ReN. Los recubrimientos se depositaron sobre muestras de acero de alta velocidad (AISI M2) y obleas de silicio. El análisis de la microestructura y la composición de fases mostró que la monocapa de ReN, que era la misma que el recubrimiento utilizado posteriormente para la fabricación de las multicapas de TiAlN/ReN, poseía una estructura cristalina cúbica. El recubrimiento de ReN tenía un crecimiento columnar preferencial en la dirección del plano (111) y presentaba precipitados de los óxidos de renio ReO 2 y ReO 3 . Se realizó un estudio detallado del comportamiento electroquímico y la resistencia a la corrosión del sustrato de acero recubierto en función del número de bicapas de TiAlN/ReN mediante espectroscopia de impedancia electroquímica y mediciones de polarización. Los recubrimientos exhibieron una dureza y un módulo de Young relativamente altos, y un mejor desempeño frente a la corrosión en medios acuosos ricos en iones de cloro cuando el número y el período de bicapa fueron 5 y 221,2 nm, respectivamente. Se observó que la formación de partículas de óxido de renio influye en el comportamiento electroquímico de los recubrimientos.spa
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElSevierspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0257897222008040spa
dc.titleA novel ReN/TiAlN multilayer coating on M2 steel by magnetron sputtering: Development and electrochemical behavioreng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://doi-org.hemeroteca.lasalle.edu.co/10.1016/j.surfcoat.2022.128883
dc.identifier.eissn1879-3347spa
dc.identifier.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0257897222008040
dc.publisher.placeReino Unidospa
dc.relation.citationedition25 Octuber 2022spa
dc.relation.citationendpage14spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume448spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalSurface & Coatings Technologyeng
dc.relation.referencesJ. Li, W. Yue, C. Wang, Microstructures and thermal damage mechanisms of sintered polycrystalline diamond compact annealing under ambient air and vacuum conditions, Int. J. Refract. Met. Hard Mater. 54 (2016) 138–147, https:// doi.org/10.1016/j.ijrmhm.2015.07.024.spa
dc.relation.referencesQ. Li, G. Zhan, D. Li, D. He, T.E. Moellendick, C.P. Gooneratne, A. G. Alalsayednassir, Ultrastrong catalyst-free polycrystalline diamond, Sci. Rep. 10 (2020) 22020, https://doi.org/10.1038/s41598-020-79167-4.spa
dc.relation.referencesH. Sumiya, K. Harano, Innovative ultra-hard materials: binderless nanopolycrystalline diamond and nano-polycrystalline cubic boron nitride, SEI Tech. Rev. (2016) 21–26, https://sumitomoelectric.com/sites/default/files/2020- 12/download_documents/82-04.pdf, https://sumitomoelectric.com/sites/default/ files/2020-12/download_documents/82-04.pdf.spa
dc.relation.referencesI. Konyashin, S. Farag, B. Ries, B. Roebuck, WC-Co-Re cemented carbides: structure, properties and potential applications, Int. J. Refract. Met. Hard Mater. 78 (2019) 247–253, https://doi.org/10.1016/j.ijrmhm.2018.10.001.spa
dc.relation.referencesB. Hering, A.-K. Wolfrum, T. Gestrich, M. Herrmann, Thermal stability of TiN coated cubic boron nitride powder, Materials 14 (2021) 1642, https://doi.org/ 10.3390/ma14071642 (Basel).spa
dc.relation.referencesA.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H. Mao, Synthesis of novel transition metal nitrides IrN2 and OsN2, Phys. Rev. Lett. 96 (2006), 155501, https://doi.org/10.1103/PhysRevLett.96.155501.spa
dc.relation.referencesE. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. Mao, R. J. Hemley, Synthesis and characterization of a binary noble metal nitride, Nat. Mater. 3 (2004) 294–297, https://doi.org/10.1038/nmat1115.spa
dc.relation.referencesF. Kawamura, H. Yusa, T. Taniguchi, Synthesis of rhenium nitride crystals with MoS 2 structure, Appl. Phys. Lett. 100 (2012) 2012–2015, https://doi.org/ 10.1063/1.4729586.spa
dc.relation.referencesA. Mansouri Tehrani, J. Brgoch, Impact of vacancies on the mechanical properties of ultraincompressible, hard rhenium subnitrides: Re2N and Re3N, Chem. Mater. 29 (2017) 2542–2549, https://doi.org/10.1021/acs.chemmater.6b04408.spa
dc.relation.referencesZ. Zhao, K. Bao, D. Li, D. Duan, F. Tian, X. Jin, C. Chen, X. Huang, B. Liu, T. Cui, Nitrogen concentration driving the hardness of rhenium nitrides, Sci. Rep. 4 (2015) 4797, https://doi.org/10.1038/srep04797.spa
dc.relation.referencesA.T. Asvini Meenaatci, R. Rajeswarapalanichamy, K. Iyakutti, First-principles study of electronic structure of transition metal nitride: ReN under normal and high pressure, Phys. B Condens. Matter 406 (2011) 3303–3307, https://doi.org/ 10.1016/j.physb.2011.05.046.spa
dc.relation.referencesM. Fuchigami, K. Inumaru, S. Yamanaka, Interstitial binary nitride ReNx phases prepared by pulsed laser deposition: structure and superconductivity dependence on nitrogen stoichiometry, J. Alloys Compd. 486 (2009) 621–627, https://doi.org/ 10.1016/j.jallcom.2009.07.018.spa
dc.relation.referencesY.L. Li, Z. Zeng, Potential ultra-incompressible material ReN: first-principles prediction, Solid State Commun. 149 (2009) 1591–1595, https://doi.org/10.1016/ j.ssc.2009.06.040.spa
dc.relation.referencesA. ul. Haq, O. Meyer, Superconducting and electrical properties of rhenium nitride and amorphous rhenium prepared by ion implantation, J. Low Temp. Phys. 50 (1983) 123–133, https://doi.org/10.1007/BF00681843.spa
dc.relation.referencesA. Friedrich, B. Winkler, L. Bayarjargal, W. Morgenroth, E.A. Juarez-Arellano, V. Milman, K. Refson, M. Kunz, K. Chen, Novel rhenium nitrides, Phys. Rev. Lett. 105 (2010), 085504, https://doi.org/10.1103/PhysRevLett.105.085504.spa
dc.relation.referencesM. Bykov, S. Chariton, H. Fei, T. Fedotenko, G. Aprilis, A.V. Ponomareva, F. Tasnadi, ´ I.A. Abrikosov, B. Merle, P. Feldner, S. Vogel, W. Schnick, V. B. Prakapenka, E. Greenberg, M. Hanfland, A. Pakhomova, H.-P. Liermann, T. Katsura, N. Dubrovinskaia, L. Dubrovinsky, High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions, Nat. Commun. 10 (2019) 2994, https://doi.org/10.1038/ s41467-019-10995-3.spa
dc.relation.referencesP. Trebuna, ˇ D. Kottfer, M. Pekarˇcíkov´ a, A. Petrikova, ´ R. Popoviˇc, F. Reh´ ak, P. Ci ˇ ˇznar, ´ Evaluating the replacement of galvanic Cr coatings, Pol. J. Environ. Stud. 27 (2018) 1289–1296, https://doi.org/10.15244/pjoes/76679.spa
dc.relation.referencesM.T.A. Reis, M.R.C. Ismael, Electroplating wastes, Phys. Sci. Rev. 3 (2019) 1–24, https://doi.org/10.1515/psr-2018-0024.spa
dc.relation.referencesA. Merlo, G. L´eonard, Magnetron sputtering vs. electrodeposition for hard chrome coatings: a comparison of environmental and economic performances, Materials 14 (2021) 3823, https://doi.org/10.3390/ma14143823 (Basel).spa
dc.relation.referencesR. Shu, E.-M. Paschalidou, S.G. Rao, J. Lu, G. Greczynski, E. Lewin, L. Nyholm, A. le Febvrier, P. Eklund, Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings, Surf. Coat. Technol. 389 (2020), 125651, https://doi.org/10.1016/j. surfcoat.2020.125651.spa
dc.relation.referencesZ. Peng, H. Miao, L. Qi, J. Gong, S. Yang, C. Liu, Microstructure and mechanical properties of titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma, Chin. Sci. Bull. 48 (2003) 1316–1320, https://doi.org/ 10.1007/BF03184169.spa
dc.relation.referencesA. Kehal, N. Saoula, S.-E.-H. Abaidia, C. Nouveau, Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels, Surf. Coat. Technol. 421 (2021), 127444, https://doi.org/10.1016/j.surfcoat.2021.127444.spa
dc.relation.referencesV. Novikov, N. Stepanov, S. Zherebtsov, G. Salishchev, Structure and properties of high-entropy nitride coatings, Metals 12 (2022) 847, https://doi.org/10.3390/ met12050847 (Basel).spa
dc.relation.referencesP.H. Mayrhofer, H. Clemens, C. Mitterer, Interfaces in nanostructured thin films and their influence on hardness, Z. Met. 96 (2005) 468–480, https://doi.org/ 10.3139/146.018132.spa
dc.relation.referencesG. Soto, A. Rosas, M.H. Farias, W. De la Cruz, J.A. Diaz, Characterization of rhenium nitride films produced by reactive pulsed laser deposition, Mater. Charact. 58 (2007) 519–526, https://doi.org/10.1016/j.matchar.2006.06.025.spa
dc.relation.referencesG. Soto, H. Tiznado, A. Reyes, W. De La Cruz, First principles calculations of interstitial and lamellar rhenium nitrides, J. Alloys Compd. 514 (2012) 127–134, https://doi.org/10.1016/j.jallcom.2011.11.023.spa
dc.relation.referencesG. Soto, H. Tiznado, W. de la Cruz, A. Reyes, Synthesis of ReN3 thin films by magnetron sputtering, J. Mater. 2014 (2014) 1–9, https://doi.org/10.1155/2014/ 745736.spa
dc.relation.referencesM. Arroyave, G. Bejarano, J. David, J. Hernandez, ´ Growth and characterization of rhenium nitride coatings produced by reactive magnetron sputtering, Thin Solid Films 733 (2021), 138809, https://doi.org/10.1016/j.tsf.2021.138809.spa
dc.relation.referencesJ. H¨ amal ¨ ¨ ainen, K. Mizohata, K. Meinander, M. Mattinen, M. Vehkam¨ aki, J. Rais ¨ anen, ¨ M. Ritala, M. Leskela, ¨ Rhenium metal and rhenium nitride thin films grown by atomic layer deposition, Angew. Chem. Int. Ed. 57 (2018) 14538–14542, https://doi.org/10.1002/anie.201806985.spa
dc.relation.referencesC. Gaona-Tiburcio, M. Montoya-Rangel, J.A. Cabral-Miramontes, F. Estupinan- ˜ Lopez, ´ P. Zambrano-Robledo, R.O. Cruz, J.G. Chacon-Nava, ´ M.A. ´ Baltazar-Zamora, F. Almeraya-Calderon, ´ Corrosion resistance of multilayer coatings deposited by PVD on Inconel 718 using electrochemical impedance spectroscopy technique, Coatings 10 (2020) 1–11, https://doi.org/10.3390/COATINGS10060521.spa
dc.relation.referencesS.H. Tsai, J.G. Duh, Microstructure and corrosion properties of multilayered CrAlN/SiN[sub x] coatings, J. Electrochem. Soc. 157 (2010) K89, https://doi.org/ 10.1149/1.3321761.spa
dc.relation.referencesA. Kumar, R. Bauri, A. Naskar, A.K. Chattopadhyay, Characterization of HiPIMS and DCMS deposited TiAlN coatings and machining performance evaluation in high speed dry machining of low and high carbon steel, Surf. Coat. Technol. 417 (2021), 127180, https://doi.org/10.1016/j.surfcoat.2021.127180.spa
dc.relation.referencesH.D.V. Mejía, A.M. Echavarría, J.A. Calderon, ´ G. Gilberto Bejarano, Microstructural and electrochemical properties of TiAlN(Ag, Cu) nanocomposite coatings for medical applications deposited by DC magnetron sputtering, J. Alloys Compd. 828 (2020), https://doi.org/10.1016/j.jallcom.2020.154396.spa
dc.relation.referencesD.K. Merl, P. Panjan, M. Panjan, M. Cekada, ˇ The role of surface defects density on corrosion resistance of PVD hard coatings, Plasma Process. Polym. 4 (2007) S613–S617, https://doi.org/10.1002/ppap.200731416.spa
dc.relation.referencesP. Panjan, A. Drnovˇsek, P. Gselman, M. Cekada, ˇ M. Panjan, Review of growth defects in thin films prepared by PVD techniques, Coatings 10 (2020) 447, https:// doi.org/10.3390/coatings10050447.spa
dc.relation.referencesH.A. Jehn, Improvement of the corrosion resistance of PVD hard coating–substrate systems, Surf. Coat. Technol. 125 (2000) 212–217, https://doi.org/10.1016/ S0257-8972(99)00551-4.spa
dc.relation.referencesY. Li, L. Qu, F. Wang, The electrochemical corrosion behavior of TiN and (Ti, Al)N coatings in acid and salt solution, Corros. Sci. 45 (2003) 1367–1381, https://doi. org/10.1016/S0010-938X(02)00223-8.spa
dc.relation.referencesD.B. Marshall, T. Noma, A.G. Evans, A simple method for determining elasticmodulus-to-hardness ratios using Knoop indentation measurements, J. Am. Ceram. Soc. 65 (1982) c175–c176, https://doi.org/10.1111/j.1151-2916.1982.tb10357.x.spa
dc.relation.referencesH. Hadadzadeh, A.R. Rezvani, A.R. Salehi Rad, E. Khozeymeh, A novel method for preparation of alumina-supported rhenium-cesium catalyst, Iran. J. Chem. Chem. Eng. 27 (2008) 37–43, https://doi.org/10.30492/IJCCE.2008.6965.spa
dc.relation.referencesY. Yuan, Y. Iwasawa, Performance and characterization of supported rhenium oxide catalysts for selective oxidation of methanol to methylal, J. Phys. Chem. B 106 (2002) 4441–4449, https://doi.org/10.1021/jp013770l.spa
dc.relation.referencesM. Bai, Z.H. Liu, L.J. Zhou, Z.Y. Liu, C.F. Zhang, Preparation of ultrafine rhenium powders by CVD hydrogen reduction of volatile rhenium oxides, Trans. Nonferrous Met. Soc. China (Engl.Ed.) 23 (2013) 538–542, https://doi.org/10.1016/S1003- 6326(13)62496-6.spa
dc.relation.referencesY. Shang, J. Xiao, H. Weng, F. Li, S. Cheng, S. Yamashita, Y. Muroya, M. Lin, Efficient separation of Re(VII) by radiation-induced reduction from aqueous solution, Chem. Eng. J. 341 (2018) 317–326, https://doi.org/10.1016/j. cej.2018.02.022.spa
dc.relation.referencesM. Frank, L. Jürgensen, J. Leduc, D. Stadler, D. Graf, I. Gessner, F. Zajusch, T. Fischer, M.A. Rose, D.N. Mueller, S. Mathur, Volatile Rhenium(I) compounds with re-N bonds and their conversion into oriented rhenium nitride films by magnetic field-assisted vapor phase deposition, Inorg. Chem. 58 (2019) 10408–10416, https://doi.org/10.1021/acs.inorgchem.9b01656.spa
dc.relation.referencesK. Taweesup, P. Visuttipitukul, N. Yongvanich, G. Lothongkum, Corrosion behavior of Ti-Cr-N coatings on tool steel substrates prepared using DC magnetron sputtering at low growth temperatures, Surf. Coat. Technol. 358 (2019) 732–740, https://doi.org/10.1016/j.surfcoat.2018.11.082.spa
dc.relation.referencesC.L. Liang, G.A. Cheng, R.T. Zheng, H.P. Liu, Fabrication and performance of TiN/ TiAlN nanometer modulated coatings, Thin Solid Films 520 (2011) 813–817, https://doi.org/10.1016/j.tsf.2011.04.159.spa
dc.relation.referencesB. Tlili, N. Mustapha, C. Nouveau, Y. Benlatreche, G. Guillemot, M. Lambertin, Correlation between thermal properties and aluminum fractions in CrAlN layers deposited by PVD technique, Vacuum 84 (2010) 1067–1074..spa
dc.relation.referencesB. Podgornik, M. Sedlaˇcek, M. Cekada, ˇ S. Jacobson, B. Zajec, Impact of fracture toughness on surface properties of PVD coated cold work tool steel, Surf. Coat. Technol. 277 (2015) 144–150, https://doi.org/10.1016/j.surfcoat.2015.07.021.spa
dc.relation.referencesH.A. Nabil A, Diffusion Kinetics And Phase Formation in Ag/Al And Ru/Al Multilayer Thin Films, Universit¨ at des Saarlandes, Saarbrücken, 2017.spa
dc.relation.referencesE.R. Parra, P. Jose, A. Arango, V.J. Benavides, XPS structure analysis of TiN/TiC bilayers produced by pulsed vacuum arc discharge, Dyna 163 (2010) 64–74.spa
dc.relation.referencesH. Aboulfadl, F. Mücklich, Atomic-scale characterization of diffusion kinetics in Ru/Al multilayer thin films, Mater. Lett. 254 (2019) 344–347, https://doi.org/ 10.1016/j.matlet.2019.07.102.spa
dc.relation.referencesM. Fenker, M. Balzer, H. Kappl, Corrosion protection with hard coatings on steel: past approaches and current research efforts, Surf. Coat. Technol. 257 (2014) 182–205, https://doi.org/10.1016/j.surfcoat.2014.08.069.spa
dc.relation.referencesM. Beckers, N. Schell, R.M.S. Martins, A. Mücklich, W. Moller, ¨ The influence of the growth rate on the preferred orientation of magnetron-sputtered Ti–Al–N thin films studied by in situ X-ray diffraction, J. Appl. Phys. 98 (2005), 044901, https://doi. org/10.1063/1.1999829.spa
dc.relation.referencesC.T. Kwok, F.T. Cheng, H.C. Man, Microstructure and corrosion behavior of laser surface-melted high-speed steels, Surf. Coat. Technol. 202 (2007) 336–348, https://doi.org/10.1016/j.surfcoat.2007.05.085.spa
dc.relation.referencesG. Li, L. Zhang, F. Cai, Y. Yang, Q. Wang, S. Zhang, Characterization and corrosion behaviors of TiN/TiAlN multilayer coatings by ion source enhanced hybrid arc ion plating, Surf. Coat. Technol. 366 (2019) 355–365, https://doi.org/10.1016/j. surfcoat.2019.03.027.spa
dc.relation.referencesR. Ananthakumar, B. Subramanian, A. Kobayashi, M. Jayachandran, Electrochemical corrosion and materials properties of reactively sputtered TiN/ TiAlN multilayer coatings, Ceram. Int. 38 (2012) 477–485, https://doi.org/ 10.1016/j.ceramint.2011.07.030.spa
dc.relation.referencesJ.F. Flores, J.J. Olaya, R. Colas, ´ S.E. Rodil, B.S. Valdez, I.G. Fuente, Corrosion behaviour of TaN thin PVD films on steels, Corros. Eng. Sci. Technol. 41 (2006) 168–176, https://doi.org/10.1179/174327806X107941.spa
dc.relation.referencesV.K.W. Grips, V. Ezhil Selvi, H.C. Barshilia, K.S. Rajam, Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering, Electrochim. Acta 51 (2006) 3461–3468, https://doi.org/ 10.1016/j.electacta.2005.09.042.spa
dc.relation.referencesS. Pugal Mani, M. Kalaiarasan, K. Ravichandran, N. Rajendran, Y. Meng, Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: a promising metallic bipolar plate for proton exchange membrane fuel cell, J. Mater. Sci. 56 (2021) 10575–10596, https://doi.org/10.1007/s10853-020-05682-4.spa
dc.relation.referencesV.K. William Grips, H.C. Barshilia, V.E. Selvi, K.S.Rajam Kalavati, Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering, Thin Solid Films 514 (2006) 204–211, https://doi.org/10.1016/j.tsf.2006.03.008.spa
dc.relation.referencesA. Vladescu, C.M. Cotrut, A. Kiss, M. Balaceanu, V. Braic, S. Zamfir, M. Braic, Corrosion resistance of the TiN, TiAlN and TiN/TiAlN nanostructured hard coatings, UPB Sci. Bull. Ser. B Chem. Mater. Sci. 68 (2006) 57–64.spa
dc.relation.referencesY.C. Chan, H.W. Chen, P.S. Chao, J.G. Duh, J.W. Lee, Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics, Vacuum 87 (2013) 195–199, https:// doi.org/10.1016/j.vacuum.2012.02.052.spa
dc.relation.referencesW. Tato, D. Landolt, Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on Brass, J. Electrochem. Soc. 145 (1998) 4173–4181, https://doi.org/10.1149/1.1838932.spa
dc.relation.referencesC.H. Hsu, M.L. Chen, K.L. Lai, Corrosion resistance of TiN/TiAlN-coated ADI by cathodic arc deposition, Mater. Sci. Eng. A 421 (2006) 182–190, https://doi.org/ 10.1016/j.msea.2005.12.014.spa
dc.relation.referencesM. Fenker, M. Balzer, H. Kappl, Corrosion behaviour of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering - tests and improvements, Thin Solid Films 515 (2006) 27–32, https://doi.org/10.1016/j. tsf.2005.12.020.spa
dc.relation.referencesH. Meidia, A. Cullis, C. Schonjahn, W. Munz, J. Rodenburg, Investigation of intermixing in TiAlN/VN nanoscale multilayer coatings by energy-filtered TEM, Surf. Coat. Technol. 151 (2002) 209–213, https://doi.org/10.1016/S0257-8972 (01)01621-8.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalRhenium nitrideeng
dc.subject.proposalMultilayer coatingseng
dc.subject.proposalMagnetron sputteringeng
dc.subject.proposalElectrochemical behavioreng
dc.subject.proposalCorrosioneng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc/4.0/