Show simple item record

dc.contributor.authorHernandez, Camilo
dc.contributor.authorBlanco, David L.
dc.contributor.authorMaranon, Alejandro
dc.date.accessioned2024-07-10T19:58:11Z
dc.date.available2024-07-10T19:58:11Z
dc.date.issued2023
dc.identifier.issn2199-7446spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3155
dc.description.abstractThis paper presents the estimation of the parameters of the Cowper-Symonds material model of a commercial copper alloy from a single Split Hopkinson Pressure Bar Test using an inverse method. Parameters were identified by minimizing the error between the transmitted strain signal predicted by a finite element model and those observed experimentally. The Taylor Test was used to validate the identified parameters by comparing the experimental final length of impacted specimens and the ones predicted by a finite element model using the identified parameters. Also, identified parameters were contrasted with those found by a traditional curve-fitting approach. It was found that finite element models using the identified parameters are better able to predict plastic deformation than those using parameters from traditional curve-fitting.eng
dc.description.abstractEste artículo presenta la estimación de los parámetros del modelo de material Cowper-Symonds de una aleación de cobre comercial a partir de una prueba de presión de Hopkinson de una sola barra dividida utilizando un método inverso. Los parámetros se identificaron minimizando el error entre la señal de deformación transmitida predicha por un modelo de elementos finitos y las observadas experimentalmente. La prueba de Taylor se utilizó para validar los parámetros identificados comparando la longitud final experimental de las muestras impactadas y las predichas por un modelo de elementos finitos utilizando los parámetros identificados. Además, los parámetros identificados se contrastaron con los encontrados mediante un enfoque de ajuste de curvas tradicional. Se encontró que los modelos de elementos finitos que utilizan los parámetros identificados son más capaces de predecir la deformación plástica que los que utilizan parámetros del ajuste de curvas tradicional.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringer Naturespa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://link.springer.com/article/10.1007/s40870-022-00364-5spa
dc.titleAn Inverse Method to Estimate Cowper‑Symonds Material Model Parameters from a Single Split Hopkinson Pressure Bar Testeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://doi.org/10.1007/s40870-022-00364-5
dc.identifier.eissn2199-7454spa
dc.identifier.urlhttps://link.springer.com/article/10.1007/s40870-022-00364-5
dc.publisher.placeSuizaspa
dc.relation.citationendpage178spa
dc.relation.citationissue2spa
dc.relation.citationstartpage167spa
dc.relation.citationvolume9spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalJournal of Dynamic Behavior of Materialseng
dc.relation.referencesSun Y, Burgueño R, Vanderklok AJ, Tekalur SA, Wang W, Lee I (2014) Compressive behavior of aluminum/copper hybrid foams under high strain rate loading. Mater Sci Eng A 592:111–120.spa
dc.relation.referencesAcharya S, Gupta R, Ghosh J, Bysakh S, Ghosh K, Mondal D, Mukhopadhyay AK (2017) High strain rate dynamic compressive behaviour of Al6061-T6 alloys. Mater Charact 127:185–197.spa
dc.relation.referencesWang L, Qiao J, Ma S, Jiao Z, Zhang T, Chen G, Zhao D, Zhang Y, Wang Z (2018) Mechanical response and deformation behavior of al0. 6cocrfeni high-entropy alloys upon dynamic loading. Mater Sci Eng A 727:208–213.spa
dc.relation.referencesZhang W, Chen X, Zhuo B, Li P, He L (2018) Efect of strain rate and temperature on dynamic mechanical behavior and microstructure evolution of ultra-high strength aluminum alloy. Mater Sci Eng A 730:336–344.spa
dc.relation.referencesKavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7(1):11–23.spa
dc.relation.referencesMariani S, Gobat G (2019) Identifcation of strength and toughness of quasi-brittle materials from spall tests: a sigma-point kalman flter approach. Inverse Probl Sci Eng 27(9):1318–1346.spa
dc.relation.referencesVaz M Jr, Tomiyama M (2020) Identifcation of inelastic parameters of the aisi 304 stainless steel: a multi-test optimization strategy. Inverse Probl Sci Eng 28(11):1551–1569.spa
dc.relation.referencesField JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Mater Sci Eng A 30(7):725–775.spa
dc.relation.referencesChen WW, Song B (1989) Split Hopkinson (Kolsky) bar: design testing and applications. Springer, New York.spa
dc.relation.referencesGilat A, Seidt J, Matrka T, Gardner K (2019) A new device for tensile and compressive testing at intermediate strain rates. Exp Mech 59(5):725–731.spa
dc.relation.referencesSasso M, Newaz G, Amodio D (2008) Material characterization at high strain rate by hopkinson bar tests and fnite element optimization. Mater Sci Eng A 487(1–2):289–300.spa
dc.relation.referencesSedighi M, Khandaei M, Shokrollahi H (2010) An approach in parametric identifcation of high strain rate constitutive model using hopkinson pressure bar test results. Mater Sci Eng A 527(15):3521–3528.spa
dc.relation.referencesMilani AS, Dabboussi W, Nemes JA, Abeyaratne RC (2009) An improved multi-objective identifcation of Johnson-Cook material parameters. Int J Impact Eng 36(2):294–302.spa
dc.relation.referencesASTM: ASTM standard E478-08(2008)-Standard test methods for chemical analysis of copper alloys.spa
dc.relation.referencesASTM: ASTM designation B62-09(2009)-Standard specifcation for composition bronze or ounce metal castings.spa
dc.relation.referencesASTM: ASTM standard E9-09 (2009)-standard test methods of compression testing of metallic materials at room temperature.spa
dc.relation.referencesKolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676–700.spa
dc.relation.referencesHopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Proc R Soc Lond Ser A 89(612):411–413.spa
dc.relation.referencesDavies RM (1948) A critical study of the Hopkinson pressure bar. Philos Trans R Soc Lond Ser A 240(821):375–457.spa
dc.relation.referencesTaylor GI (1948) The use of fat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc R Soc Lond Ser A 194(1038):289–299.spa
dc.relation.referencesMeyers MA (1994) Dynamic Behavior of Materials. Wiley-Interscience, New York.spa
dc.relation.referencesWhifn AC (1948) The use of fat-ended projectiles for determining dynamic yield stress. II. Tests on various metallic materials. Proc R Soc Lond A 194:300–322.spa
dc.relation.referencesWilkins ML, Guinan MW (1973) Impact of cylinders on a rigid boundary. J Appl Phys 44(3):1200–1206.spa
dc.relation.referencesHawkyard JB (1969) A theory for the mushrooming of fat-ended projectiles impinging on a fat rigid anvil, using energy considerations. Int J Mech Sci 11(3):313–333.spa
dc.relation.referencesANSYS: ANSYS LS-DYNA User’s Guide: ANSYS Release 12.0. ANSYS Inc., (2009). ANSYS Inc.spa
dc.relation.referencesCowper GR, Symonds PS (1957) Strain hardening and strainrate efects in the impact loading of cantilever beams. Technical Report 28, Brown University Division of Applied Mathematics.spa
dc.relation.referencesHernandez C, Maranon A, Ashcroft I, Casas-Rodriguez J (2013) A computational determination of the Cowper-Symonds parameters from a single Taylor test. Appl Math Modell 37(7):4698–4708.spa
dc.relation.referencesHernandez C, Buchely M, Maranon A (2015) Dynamic characterization of Roma Plastilina No. 1 from Drop Test and inverse analysis. Int J Mech Sci 100:158–168.spa
dc.relation.referencesAcosta C, Hernandez C, Maranon A, Casas-Rodriguez J (2016) Validation of material constitutive parameters for the AISI 1010 steel from Taylor impact tests. Mater Des 110:324–331.spa
dc.relation.referencesLambert G, Gao H (1995) Line moments and invariants for real time processing of vectorized contour data. In: Braccini C, DeFloriani L, Vernazza G (eds) Image analysis and processing. Lecture notes in computer science. Springer, New York, pp 347–352.spa
dc.relation.referencesHu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inform Theory 8(2):179–187.spa
dc.relation.referencesWen W, Lozzi A (1993) Recognition and inspection of manufactured parts using line moments of their boundaries. Pattern Recognit 26(10):1461–1471.spa
dc.relation.referencesASTM: ASTM Standard E8/E8M-22-Standard test methods for tension testing of metallic materials (2022).spa
dc.relation.referencesShin H, Kim J-B (2019) Evolution of specimen strain rate in split Hopkinson bar test. Proc Inst Mech Eng Part C 233(13):4667–4687.spa
dc.relation.referencesGray G III, Blumenthal WR (2000) Split-hopkinson pressure bar testing of soft materials. ASM Handbook 8:488–496.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalUNS C83600eng
dc.subject.proposalMechanical characterizationeng
dc.subject.proposalHigh-strain rateseng
dc.subject.proposalSplit Hopkinson Pressure Bar Testeng
dc.subject.proposalTaylor testeng
dc.subject.proposalInverse problemeng
dc.subject.proposalParameter identifcationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc/4.0/