Show simple item record

dc.contributor.authorGómez Taborda, Yesenia
dc.contributor.authorGomez Botero, Maryory Astrid
dc.contributor.authorCastaño-González, Juan Guillermo
dc.contributor.authorBermudez-Castañeda, Angela
dc.date.accessioned2024-07-11T19:42:13Z
dc.date.available2024-07-11T19:42:13Z
dc.date.issued2021
dc.identifier.issn0954-4119spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3157
dc.description.abstractDuring their service life, modular interfaces experience tribological, and corrosion phenomena that lead to deterioration, which in turn can cause a revision procedure to remove the failed prosthesis. To achieve a clearer understanding of the surface performance of those biomedical alloys and the role of the surface properties in the mechanical and chemical performance, samples were taken from retrieval implants made of Ti6Al4V and Co28Cr6Mo alloys. Polarization resistance and pin-on-disk tests were performed on these samples. Physical properties such as contact angle, roughness, microhardness, and Young’s modulus were determined. A correlation between surface energy and evolution of the tribological contact was observed for both biomedical alloys. In tribocorrosion tests, titanium particles seem to remain in the surface, unlike what is observed in CoCr alloys. These metallic or oxidized particles could cause necrosis or adverse tissue reactions.eng
dc.description.abstractDurante su vida útil, las interfaces modulares experimentan fenómenos tribológicos y de corrosión que conducen al deterioro, lo que a su vez puede provocar un procedimiento de revisión para retirar la prótesis fallida. Para lograr una comprensión más clara del rendimiento de la superficie de esas aleaciones biomédicas y el papel de las propiedades de la superficie en el rendimiento mecánico y químico, se tomaron muestras de implantes de recuperación hechos de aleaciones Ti6Al4V y Co28Cr6Mo. Se realizaron pruebas de resistencia a la polarización y de pin-on-disk en estas muestras. Se determinaron propiedades físicas como el ángulo de contacto, la rugosidad, la microdureza y el módulo de Young. Se observó una correlación entre la energía superficial y la evolución del contacto tribológico para ambas aleaciones biomédicas. En las pruebas de tribocorrosión, las partículas de titanio parecen permanecer en la superficie, a diferencia de lo que se observa en las aleaciones de CoCr. Estas partículas metálicas u oxidadas podrían causar necrosis o reacciones tisulares adversas.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSage Journalsspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://journals.sagepub.com/doi/10.1177/09544119211061928spa
dc.titleAssessment of physical, chemical, and tribochemical properties of biomedical alloys used in explanted modular hip prostheseseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Diseños sostenibles en ingeniería mecánicaspa
dc.identifier.doihttps://journals.sagepub.com/doi/10.1177/09544119211061928#:~:text=https%3A//doi.org/10.1177/09544119211061928
dc.identifier.eissn2041-3033spa
dc.identifier.urlhttps://journals.sagepub.com/doi/10.1177/09544119211061928
dc.relation.citationendpage12spa
dc.relation.citationissue4spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume236spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicineeng
dc.relation.referencesJohns Hopkins Medicine. Total hip replacement: Anterior approach, https://johnshopkinshealthcare.staywellsol utionsonline.com/Conditions/Orthopedics/Test/Orthoped ic/135,402 (2021, accessed 19 august 2021).spa
dc.relation.referencesAustralian Orthopedic Association. National joint replacement registry (AOANJRR). Hip, knee & shoulder arthroplasty. Annual report Adelaide: AOA, 2019.spa
dc.relation.referencesEsposito CI, Wright TM, Goodman SB, et al. What is the trouble with trunnions? Clin Orthop Relat Res 2014; 472: 3652–3658.spa
dc.relation.referencesWassef AJ and Schmalzried TP. Femoral taperosis: an accident waiting to happen? Bone Joint J 2013; 95-B(11 Suppl A): 3–6.spa
dc.relation.referencesBreme H, Biehl V, Reger N, et al. Metallic biomaterials: introduction. In: Murphy W, Black J and Hastings G (eds) Handbook of biomaterial properties. New York: Springer, 2016, pp.151–158, 2nd ed.spa
dc.relation.referencesPound BG. Corrosion behavior of metallic materials in biomedical applications I: Ti and its alloys. Corros Rev 2014; 32: 1–20.spa
dc.relation.referencesNiinomi M. Recent metallic materials for biomedical applications. Metallurgical Mater Trans A 2002; 33: 477–486.spa
dc.relation.referencesRatner B, Hoffman A, Schoen F, et al. Biomaterials science: an introduction to materials in medicine. Boston: Elsevier Academic Press, 2004.spa
dc.relation.referencesLewis AC, Kilburn MR, Papageorgiou I, et al. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants. J Biomed Mater Res A 2005; 73A: 456–467.spa
dc.relation.referencesLison D, van den Brule S and Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018; 48: 522–539.spa
dc.relation.referencesVirtanen S, Milosev I, Gomez-Barrena E, et al. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 2008; 4: 468–476.spa
dc.relation.referencesCely M. Efecto de la modificacio´n superficial de la aleacio´n Ti6AL4V en condicio´n de contacto lubricado con polietileno de ultra alto peso molecular (UHMWPE) (in spanish). PhD Thesis, Universidad Nacional, Colombia, 2013.spa
dc.relation.referencesLiu X, Chu P and Ding C. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Mater Sci Eng R Rep 2005; 47: 49–121.spa
dc.relation.referencesWalker PR, LeBlanc J and Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 1989; 28: 3911–3915.spa
dc.relation.referencesKurtz SM, Kocago¨z SB, Hanzlik JA, et al. Do ceramic femoral heads reduce taper fretting corrosion in Hip arthroplasty? A retrieval study. Clin Orthop Relat Res 2013; 471: 3270–3282.spa
dc.relation.referencesBermu´dez A. Degradation of modular hip joint implants. A corrosion and tribocorrosion approach. PhD Thesis, EPFL, Switzerland, 2018.spa
dc.relation.referencesCadel ES, Topoleski LDT, Vesnovsky O, et al. A comparison of metal/metal and ceramic/metaltaper-trunnion modular connections in explanted total hip replacements. J Biomed Mater Res Part B Appl Biomater 2021; 1–9.spa
dc.relation.referencesLandolt D. Passivity of metals. In: Corrosion and surface chemistry of metals. Laussane: EPFL Press, 2007, 1st ed.spa
dc.relation.referencesLaub JS. Fretting induced fracture of coupling driven shafts. In: International Compressor Engineering Conference, 1980, paper 310, pp. 74–78. West Lafayette: Purdue e-Pubs.spa
dc.relation.referencesBoyer R, Collings EW and Welsch G. Titanium alloys. In: Boyer R, Welsch G, Collings EW, et al. (eds) Materials properties handbook. Novelty, OH: ASM International, 2007.spa
dc.relation.referencesBermu´dez-Castan˜eda A, Igual-Mun˜oz A and Mischler S. A crevice corrosion model for biomedical trunnion geometries and surfaces feature. Materials 2021; 14: 1005.spa
dc.relation.referencesHoeppner DW and Chandrasekaran V. Fretting in orthopaedic implants: a review. Wear 1994; 173: 189–197.spa
dc.relation.referencesTarity TD, Koch CN, Burket JC, et al. Fretting and corrosion at the backside of modular Cobalt chromium acetabular inserts: a retrieval analysis. J Arthroplasty 2017; 32: 1033–1039.spa
dc.relation.referencesParekh J, Jones H, Chan N, et al. Effect of angular mismatch tolerance on trunnion micro-motion in metal-onmetal THA designs. Bone Amp Jt J Orthop Proc Suppl 2013; 95-B: 261.spa
dc.relation.referencesJauch SY, Huber G, Haschke H, et al. Design parameters and the material coupling are decisive for the micromotion magnitude at the stem–neck interface of bi-modular hip implants. Med Eng Phys 2014; 36(3): 300–307.spa
dc.relation.referencesHaschke H, Jauch-Matt SY, Sellenschloh K, et al. Assembly force and taper angle difference influence the relative motion at the stem–neck interface of bi-modular hip prostheses. Proc IMechE, Part H: J Engineering in Medicine 2016; 230: 690–699.spa
dc.relation.referencesHiggs GB, MacDonald DW, Gilbert JL, et al. Does taper size have an effect on taper damage in retrieved metal-onpolyethylene total hip devices? J Arthroplasty 2016; 31: 277–281.spa
dc.relation.referencesGkagkalis G, Mettraux P, Omoumi P, et al. Adverse tissue reaction to corrosion at the neck-stem junction after modular primary total hip arthroplasty. Orthop Traumatol Surg Res 2015; 101: 123–126.spa
dc.relation.referencesMischler S, Debaud S and Landolt D. Wear-Accelerated corrosion of passive metals in tribocorrosion systems. J Electrochem Soc 1998; 145: 750–758.spa
dc.relation.referencesIgual Mun˜oz A, Espallargas N and Miischler S. Tribocorrosion. 1st ed. Switzerland: Springer International Publishing, 2020. pp.71–87.spa
dc.relation.referencesIgual Munoz A, Schwiesau J, Jolles BM, et al. In vivo electrochemical corrosion study of a CoCrMo biomedical alloy in human synovial fluids. Acta Biomater 2015; 21: 228–236.spa
dc.relation.referencesGuadalupe S, Cao S, Cantoni M, et al. Applicability of a recently proposed tribocorrosion model to CoCr alloys with different carbides content. Wear 2017; 376- 377: 203–211.spa
dc.relation.referencesWitt F, Bosker BH, Bishop NE, et al. The relation between titanium taper corrosion and cobalt-chromium bearing wear in large-head metal-on-metal total hip prostheses: a retrieval study. J Bone Joint Surg Am 2014; 96: e157–e157(9).spa
dc.relation.referencesLangton DJ, Sidaginamale RP, Joyce TJ, et al. A comparison study of stem taper material loss at similar and mixed metal head-neck taper junctions. Bone Joint J 2017; 99-B: 1304–1312.spa
dc.relation.referencesDe Martino I, Assini JB, Elpers ME, et al. Corrosion and fretting of a modular hip system: a retrieval analysis of 60 rejuvenate stems. J Arthroplasty 2015; 30: 1470–1475.spa
dc.relation.referencesMatsen Ko LJ, Pollag KE, Yoo JY, et al. Serum metal ion levels following total hip arthroplasty with modular dual mobility components. J Arthroplasty 2016; 31: 186–189.spa
dc.relation.referencesNam D, Salih R, Brown KM, et al. Metal ion levels in young, active patients receiving a modular, dual mobility total hip arthroplasty. J Arthroplasty 2017; 32: 1581–1585.spa
dc.relation.referencesChalmers BP, Mangold DG, Hanssen AD, et al. Uniformly low serum cobalt levels after modular dualmobility total hip arthroplasties with ceramic heads: a prospective study in high-risk patients. Bone Joint J 2019; 101-B: 57–61.spa
dc.relation.referencesCivinini R, Cozzi Lepri A, Carulli C, et al. Patients following revision total hip arthroplasty with modular dual mobility components and Cobalt-Chromium inner metal head are at risk of increased serum metal ion levels. J Arthroplasty 2020; 35: S294–S298.spa
dc.relation.referencesCao S and Mischler S. Tribocorrosion of a CoCrMo alloy in sulfuric acid – glycerol mixtures. Wear 2020; 458-459: 2003443.spa
dc.relation.referencesGuadalupe-Maldonado S, Mischler S, Cantoni M, et al. Mechanical and chemical mechanisms in the tribocorrosion of a stellite type alloy. Wear 2013; 308: 213–221.spa
dc.relation.referencesBarril S, Mischler S and Landolt D. Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9wt.% sodium chloride solution. Wear 2004; 256: 963–972.spa
dc.relation.referencesBarril S, Mischler S and Landolt D. Electrochemical effects on the fretting corrosion behaviour of Ti6Al4V in 0.9% sodium chloride solution. Wear 2005; 259: 282–291.spa
dc.relation.referencesRimondini L, Fare` S, Chiesa R, et al. The effect of composition, wettability and roughness of the substrate on in vivo early bacterial colonization of titanium. J Appl Biomater Biomech 2003; 1: 131–138.spa
dc.relation.referencesElias CN, Oshida Y, Lima JH, et al. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 2008; 1: 234–242.spa
dc.relation.referencesMartı´nez-Herna´ndez M, Hannig M, Garcı´a-Pe´rez VI, et al. Roughness and wettability of titanium implant surfaces modify the salivary pellicle composition. J Biomed Mater Res Part B Appl Biomater 2021; 109: 1017–1028.spa
dc.relation.referencesFeng B, Weng J, Yang BC, et al. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 2003; 24: 4663–4670.spa
dc.relation.referencesLong M and Rack HJ. Titanium alloys in total joint Replacement—a materials science perspective. Biomaterials 1998; 19: 1621–1639.spa
dc.relation.referencesBaura G. Total hip prostheses. In: Baura G (ed.) Medical device technologies. Amsterdam, The Netherlands: Elsevier, 2012, pp.381–404.spa
dc.relation.referencesSahami-Nejad M, Lashgari HR, Zangeneh S, et al. Determination of residual stress on TIG-treated surface via nanoindentation technique in Co-cr-Mo-C alloy. Surf Coat Technol 2019; 380: 125020.spa
dc.relation.referencesVidal C V. Effect of heat treatment and applied potential on the electrochemical behavior of the biomedical CoCrMo alloy in physiological media. Master Thesis, Polytechnic University of Valencia, Valencia, Spain, 2008.spa
dc.relation.referencesPatel P, Jamnapara NI, Zala A, et al. Investigation of hot-dip aluminized Ti6Al4V alloy processed by different thermal treatments in an oxidizing atmosphere. Surf Coat Technol 2020; 385: 125323.spa
dc.relation.referencesBaraja Go´mez S. Tribological behavior of cobaltchromium alloys for use as biomaterials. Graduate Thesis, University of Valladolid, Valladolid, Spain, 2015.spa
dc.relation.referencesEl-Labban HF, Mahmoud ER and Al-Wadai H. Laser cladding of Ti6Al4V alloy with vanadium carbide particles. Adv Prod Eng Manag 2014; 9: 159–167.spa
dc.relation.referencesMilosˇev I and Strehblow HH. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim Acta 2003; 48: 2767–2774.spa
dc.relation.referencesKaesche H. Corrosion of metals: physicochemical principles and current problems. Berlin: Springer, 2003.spa
dc.relation.referencesSuarez F and Velez J. Study of the wear model proposed by Archard. DYNA 2005; 72: 27–43.spa
dc.relation.referencesDalmau Borra´s A, Roda Buch A, Rovira Cardete A, et al. Chemo-mechanical effects on the tribocorrosion behavior of titanium/ceramic dental implant pairs in artificial saliva. Wear 2019; 426–427: 162–170.spa
dc.relation.referencesFillot N, Iordanoff I and Berthier Y. Wear modeling and the third body concept. Wear 2007; 262: 949–957.spa
dc.relation.referencesGodet M. Third-bodies in tribology. Wear 1990; 136: 29–45.spa
dc.relation.referencesSimonsen LO, Harbak H and Bennekou P. Cobalt metabolism and Toxicology–a brief update.. Sci Total Environ 2012; 432: 210–215.spa
dc.relation.referencesLeyssens L, Vinck B, Van Der Straeten C, et al. Cobalt toxicity in Humans-A review of the potential sources and systemic health effects. Toxicology 2017; 387: 43–56.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalModular hip prosthesiseng
dc.subject.proposalBiocompatibilityeng
dc.subject.proposalWeareng
dc.subject.proposalCorrosioneng
dc.subject.proposalSBFeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc/4.0/