Mostrar el registro sencillo del ítem

dc.contributor.authorCastellanos, German
dc.contributor.authorDeruyck, Margot
dc.contributor.authorMartens, Luc
dc.contributor.authorJoseph, Wout
dc.date.accessioned2021-05-12T14:18:45Z
dc.date.accessioned2021-10-01T17:19:08Z
dc.date.available2021-05-12T14:18:45Z
dc.date.available2021-10-01T17:19:08Z
dc.date.issued2020
dc.identifier.issn2169-3536
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1423
dc.description.abstractUnmanned Aerial Vehicles (UAV) are part of precision agriculture; also, their impact on fast deployable wireless communication is offering new solutions and systems never envisioned before such as collecting information from underground sensors by using low power Internet of Things (IoT) technologies. In this paper, we propose a (Narrow Band IoT) NB-IoT system for collecting underground soil parameters in potato crops using a UAV-aided network. To this end, a simulation tool implementing a gateway mounted on a UAV using NB-IoT based access network and LTE based backhaul network is developed. This tool evaluates the performance of a realistic scenario in a potato field near Bogota, Colombia, accounting for real size packets in a complete IoT application. While computing the wireless link quality, it allocates access and backhaul resources simultaneously based on the technologies used. We compare the performance of wireless underground sensors buried in dry and wet soils at four different depths. Results show that a single drone with 50 seconds of flight time could satisfy more than 2000 sensors deployed in a 20 hectares field, depending on the buried depth and soil characteristics. We found that an optimal flight altitude is located between 60 m and 80 m for buried sensors. Moreover, we establish that the water content reduces the maximum reachable buried depth from 70 cm in dry soils, down to 30 cm in wet ones. Besides, we found that in the proposed scenario, sensors' battery life could last up to 82 months for above ground sensors and 77 months for the deepest buried ones. Finally, we discuss the influence of the sensor's density and buried depth, the flight service time and altitude in power-constrained conditions and we propose optimal configuration to improve system performance.eng
dc.description.abstractLos vehículos aéreos no tripulados (UAV) forman parte de la agricultura de precisión; además, su impacto en la comunicación inalámbrica de rápido despliegue está ofreciendo nuevas soluciones y sistemas nunca antes previstos, como la recogida de información de sensores subterráneos mediante el uso de tecnologías del Internet de las cosas (IoT) de baja potencia. En este trabajo, proponemos un sistema (Narrow Band IoT) NB-IoT para la recogida de parámetros del suelo subterráneo en cultivos de patata utilizando una red asistida por UAV. Para ello, se desarrolla una herramienta de simulación que implementa una pasarela montada en un UAV utilizando una red de acceso basada en NB-IoT y una red de retorno basada en LTE. Esta herramienta evalúa el rendimiento de un escenario realista en un campo de patatas cerca de Bogotá, Colombia, teniendo en cuenta paquetes de tamaño real en una aplicación completa de IoT. Mientras computa la calidad del enlace inalámbrico, asigna los recursos de acceso y backhaul simultáneamente basándose en las tecnologías utilizadas. Comparamos el rendimiento de los sensores inalámbricos subterráneos enterrados en suelos secos y húmedos a cuatro profundidades diferentes. Los resultados muestran que un solo dron con 50 segundos de vuelo podría satisfacer a más de 2000 sensores desplegados en un campo de 20 hectáreas, dependiendo de la profundidad enterrada y de las características del suelo. Encontramos que una altitud de vuelo óptima se sitúa entre 60 m y 80 m para los sensores enterrados. Además, establecemos que el contenido de agua reduce la profundidad máxima alcanzable enterrada de 70 cm en suelos secos, hasta 30 cm en los húmedos. Además, descubrimos que en el escenario propuesto, la vida de la batería de los sensores podría durar hasta 82 meses para los sensores en superficie y 77 meses para los más enterrados. Por último, analizamos la influencia de la densidad del sensor y la profundidad de enterrado, el tiempo de servicio de vuelo y la altitud en condiciones de energía limitada y proponemos una configuración óptima para mejorar el rendimiento del sistema.spa
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIEEEspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://ieeexplore.ieee.org/document/9042335spa
dc.titleSystem Assessment of WUSN Using NB-IoT UAV-Aided Networks in Potato Cropseng
dc.typeArtículo de revistaspa
dc.description.notes1 Department of Electronics Engineering, Colombian School of Engineering, Bogota 111166, Colombia 2 IMEC, Department of Information Technology, Ghent University, 9052 Ghent, Belgium Corresponding author: German Castellanos (german.castellanos@ugent.be) The work of German Castellanos was supported in part by the Colfuturo (Fundación para el futuro de Colombia), and in part by the Colombian School of Engineering – Julio Garavito, Doctoral scholarship Colfuturo-PCB 2018.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupEcitrónicaspa
dc.identifier.doi10.1109/ACCESS.2020.2982086
dc.identifier.urlhttps://doi.org/10.1109/access.2020.2982086
dc.publisher.placeFundación para el futuro de Colombia, Colombia.spa
dc.relation.citationeditionVolumen 8, 2020.spa
dc.relation.citationendpage56836spa
dc.relation.citationstartpage56823spa
dc.relation.citationvolume8spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalIEEE Accessspa
dc.relation.referencesY. Zeng, R. Zhang and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges", IEEE Commun. Mag., vol. 54, pp. 36-42, May 2016.spa
dc.relation.referencesY. Zeng, J. Lyu and R. Zhang, "Cellular-connected UAV: Potential challenges and promising technologies", IEEE Wireless Commun., vol. 26, no. 1, pp. 120-127, Feb. 2019.spa
dc.relation.referencesM. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam and M. Debbah, "A tutorial on UAVs for wireless networks: Applications challenges and open problems", arXiv:1803.00680, 2018, [online] Available: http://arxiv.org/abs/1803.00680.spa
dc.relation.referencesN. H. Motlagh, T. Taleb and O. Arouk, "Low-altitude unmanned aerial vehicles-based Internet of Things services: Comprehensive survey and future perspectives", IEEE Internet Things J., vol. 3, no. 6, pp. 899-922, Dec. 2016.spa
dc.relation.referencesX. Yu, P. Wu, W. Han and Z. Zhang, "A survey on wireless sensor network infrastructure for agriculture", Comput. Standards Interfaces, vol. 35, no. 1, pp. 59-64, Jan. 2013.spa
dc.relation.referencesK. Goel and A. K. Bindal, "Wireless sensor network in precision agriculture: A survey report", Proc. 5th Int. Conf. Parallel Distrib. Grid Comput. (PDGC), pp. 176-181, Dec. 2018.spa
dc.relation.referencesT. Ojha, S. Misra and N. S. Raghuwanshi, "Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges", Comput. Electron. Agricult., vol. 118, pp. 66-84, Oct. 2015.spa
dc.relation.referencesX. Yu, P. Wu, W. Han and Z. Zhang, "Overview of wireless underground sensor networks for agriculture", Afr. J. Biotechnol., vol. 11, no. 17, pp. 3942-3948, Feb. 2012.spa
dc.relation.referencesI. F. Akyildiz and E. P. Stuntebeck, "Wireless underground sensor networks: Research challenges", Ad Hoc Netw., vol. 4, no. 6, pp. 669-686, Nov. 2006.spa
dc.relation.referencesH. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, et al., "Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges", IEEE Access, vol. 7, pp. 48572-48634, 2019.spa
dc.relation.referencesU. R. Mogili and B. B. V. L. Deepak, "Review on application of drone systems in precision agriculture", Procedia Comput. Sci., vol. 133, pp. 502-509, Jan. 2018.spa
dc.relation.referencesS. Banu, "Precision agriculture: Tomorrow’s technology for today’s farmer", J. Food Process. Technol., vol. 6, no. 8, pp. 1-6, Jun. 2015.spa
dc.relation.referencesU. Shafi, R. Mumtaz, J. García-Nieto, S. A. Hassan, S. A. R. Zaidi and N. Iqbal, "Precision agriculture techniques and practices: From considerations to applications", Sensors, vol. 19, no. 17, pp. 3796, Sep. 2019.spa
dc.relation.referencesA. K. Saha, J. Saha, R. Ray, S. Sircar, S. Dutta, S. P. Chattopadhyay, et al., "IoT-based drone for improvement of crop quality in agricultural field", Proc. IEEE 8th Annu. Comput. Commun. Workshop Conf. (CCWC), pp. 1-4, Jan. 2018.spa
dc.relation.referencesThe EU Potato Sector |Europatat, Nov. 2019, [online] Available: https://europatat.eu/activities/the-eu-potato-sector/.spa
dc.relation.referencesBoletin Mensual Regional No08, Bogotá, Colombia, 2018.spa
dc.relation.referencesEl cultivo de la papa (Solanum tuberosum L.) y un estudio de caso de los costos de producción de papa Pastusa Suprema, Bogota, Colombia, vol. 55, Jan. 2017.spa
dc.relation.referencesPotato | Land & Water | Food and Agriculture Organization of the United Nations | Land & Water | Food and Agriculture Organization of the United Nations, Nov. 2019, [online] Available: http://www.fao.org/land-water/databases-and-software/crop-information/potato/en/.spa
dc.relation.referencesAqeel-ur-Rehman, A. Z. Abbasi, N. Islam and Z. A. Shaikh, "A review of wireless sensors and networks’ applications in agriculture", Comput. Standards Interfaces, vol. 36, no. 2, pp. 263-270, Feb. 2014.spa
dc.relation.referencesH. Jawad, R. Nordin, S. Gharghan, A. Jawad and M. Ismail, "Energy-efficient wireless sensor networks for precision agriculture: A review", Sensors, vol. 17, no. 8, pp. 1781, Aug. 2017.spa
dc.relation.referencesA. Salam and S. Shah, "Internet of Things in smart agriculture: Enabling technologies", Proc. IEEE 5th World Forum Internet Things (WF-IoT), pp. 692-695, Apr. 2019.spa
dc.relation.referencesM. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour and E.-H.-M. Aggoune, "Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk", IEEE Access, vol. 7, pp. 129551-129583, 2019.spa
dc.relation.referencesC.-R. Rad, O. Hancu, I.-A. Takacs and G. Olteanu, "Smart monitoring of potato crop: A cyber-physical system architecture model in the field of precision agriculture", Agricult. Agricult. Sci. Procedia, vol. 6, pp. 73-79, Jan. 2015.spa
dc.relation.referencesY. Suleman, R. V. Manurung, D. Kurniawan, I. D. P. Hermida and A. Heryana, "Development of precision farming using modular multi node sensor", Proc. Int. Conf. Radar Antenna Microw. Electron. Telecommun. (ICRAMET), pp. 99-103, Nov. 2018.spa
dc.relation.referencesH. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li and X. Wang, "Context-aware QoS prediction with neural collaborative filtering for Internet-of-Things services", IEEE Internet Things J., Dec. 2, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.armarcInternet de las cosasspa
dc.subject.armarcInternet of thingseng
dc.subject.armarcRedes de sensores inalámbricosspa
dc.subject.armarcWireless sensor networkseng
dc.subject.proposalPrecision agricultureeng
dc.subject.proposalNB-IoTeng
dc.subject.proposalUnmanned aerial vehicleseng
dc.subject.proposalWireless underground sensor networkseng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/