UA-61751701-2

Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes
    • español
    • English
EscuelaIng
  • English 
    • español
    • English
  • Login
  • Inicio
  • Guías de Uso
    • Directrices
    • Procedimientos de Trabajo de Grado
    • Guía de Autoarchivo
    • Formato de Autorización para Publicación
  • Navegar
    • Comunidades
    • Autores
    • Títulos
    • Fechas
    • Materias
    • Tipo de Material
  • Investigadores
  • Organizaciones
  • Proyectos

Repositorio Digital

  • Comunities Comunities
  • Authors Authors
  • Titles Titles
  • Dates Dates
  • Subjects Subjects
  • Resource Type Resource Type
View Item 
  •   DSpace Home
  • 2 - Investigación
  • A - Grupos de Investigación
  • AA. Gibiome
  • View Item
  •   DSpace Home
  • 2 - Investigación
  • A - Grupos de Investigación
  • AA. Gibiome
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Type

My Account

LoginRegister

Statistics

View Usage Statistics

Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes


Orjuela Canon, Alvaro David
Perdomo Charry, Oscar Julian

Artículo de revista

2020

SPIE

Modelos - Aprendizaje automáticoBuscar en Repositorio UMECIT
Células cancerosasBuscar en Repositorio UMECIT
Predictive analyticsBuscar en Repositorio UMECIT
Análisis predictivoBuscar en Repositorio UMECIT
Análisis predictivoBuscar en Repositorio UMECIT

Currently, cancer is the leading cause of death worldwide, making millions of deaths annually in developing countries due to a shortage of detection and treatment. Early detection of cancer neoantigens is useful for specialists because they can help in the development of more successful treatments. Based on this problem, the objective of this work is to carry out a comparative process between machine learning models, to determine which of them allows an adequate prediction of the data, and thus determine the carcinogenic neoantigens. For this, information extracted from protein sequences was employed. The preliminary results show sensitivity and specificity of 1.0 and 0.98 respectively.
 
En la actualidad, el cáncer es la principal causa de muerte en todo el mundo y provoca millones de fallecimientos anuales en los países en desarrollo debido a la escasez de detección y tratamiento. La detección temprana de los neoantígenos del cáncer es útil para los especialistas, ya que pueden ayudar en el desarrollo de tratamientos más exitosos. Partiendo de esta problemática, el objetivo de este trabajo es realizar un proceso comparativo entre modelos de aprendizaje automático, para determinar cuál de ellos permite una adecuada predicción de los datos, y así determinar los neoantígenos cancerígenos. Para ello, se empleó la información extraída de las secuencias de proteínas. Los resultados preliminares muestran una sensibilidad y especificidad de 1,0 y 0,98 respectivamente.
 

https://repositorio.escuelaing.edu.co/handle/001/1471

https://doi.org/10.1117/12.2579602

  • AA. Gibiome [38]

Descripción: Artículo de revista
Título: Comparison of machine learning models for the prediction of cancer cells using MHC class I complexes.pdf
Tamaño: 573.0Kb

Unicordoba LogoPDFClosed Access

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Gestores Bibliográficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes

Oferta académica

Carreras profesionales

Especializaciones

Maestrías

Doctorado

Nustros Campus

Introducción al campus

Tecnología

Fortalezas

Premios y reconocimientos

Flora y fauna

Visita el campus

Internacionalización

Programas y alianzas

Movilidad

Sobre la Escuela y Bogotá

Convenios internacionales, nacionales y con colegios

Ayuda

PQRSFC

Centro de Ayuda

Contáctenos

Habeas Data

Centro de Servicios Tecnológicos

Directorio Escuela

acriditación institucional
icoMaps

AK. 45 No. 205 - 59, Autopista Norte.

PBX: +57(1) 668 3600 - Bogotá.

Línea nacional gratuita:

018000112668.

Sistema DSPACE - Metabiblioteca | logo