UA-61751701-2

Desarrollo de un aplicativo web para el apoyo de identificación de fallas comunes en máquinas de anestesia en un hospital de alta complejidad
    • español
    • English
EscuelaIng
  • English 
    • español
    • English
  • Login
  • Inicio
  • Guías de Uso
    • Directrices
    • Procedimientos de Trabajo de Grado
    • Guía de Autoarchivo
    • Formato de Autorización para Publicación
  • Navegar
    • Comunidades
    • Autores
    • Títulos
    • Fechas
    • Materias
    • Tipo de Material
  • Investigadores
  • Organizaciones
  • Proyectos

Repositorio Digital

  • Comunities Comunities
  • Authors Authors
  • Titles Titles
  • Dates Dates
  • Subjects Subjects
  • Resource Type Resource Type
View Item 
  •   DSpace Home
  • 1- Tesis de Grado y Trabajos Dirigidos
  • B - Ingeniería Biomédica
  • BA - Trabajos Dirigidos de Biomédica
  • View Item
  •   DSpace Home
  • 1- Tesis de Grado y Trabajos Dirigidos
  • B - Ingeniería Biomédica
  • BA - Trabajos Dirigidos de Biomédica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Type

My Account

LoginRegister

Statistics

View Usage Statistics

Desarrollo de un aplicativo web para el apoyo de identificación de fallas comunes en máquinas de anestesia en un hospital de alta complejidad


Gracia Ramirez, David Leonardo

Aya Parra, Pedro Antonio

Trabajo de grado - Pregrado

2022

Anestesia General, máquina de anestesia, detección de fallas, Machine Learning, Python, Random Forest.Buscar en Repositorio UMECIT

El presente documento es el resultado de la investigación de fallas comunes en máquina de anestesia realizada en un hospital de cuarto nivel en la ciudad de Bogotá. Además, se encuentra la metodología que se realizó para el desarrollo del aplicativo web de identificación de fallas a partir de los datos de los mantenimientos correctivos recolectados en el hospital de los fabricantes Dräger y Datex Ohmeda por medio de dos métodos de Machine Learning. Obteniendo como resultado un aplicativo web de soporte para el personal de ingeniería biomédica para la identificación de fallas en máquinas de anestesia de marca Dräger mediante el método de Decision Tree Classifier con un 64% de certeza. Mientras que para Datex Ohmeda el método con mayor precisión fue Random Forest Classifier con el 74% de efectividad.

https://repositorio.escuelaing.edu.co/handle/001/2146

  • BA - Trabajos Dirigidos de Biomédica [187]

Descripción: Articulo principal
Título: David Leonardo_Gracia Ramirez_Final (1).pdf
Tamaño: 1.683Mb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Descripción: Autorizacion
Título: Autorización de publicación Trabajo Dirigido.pdf
Tamaño: 115.5Kb

Unicordoba LogoPDFClosed Access

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliográficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes

Oferta académica

Carreras profesionales

Especializaciones

Maestrías

Doctorado

Nustros Campus

Introducción al campus

Tecnología

Fortalezas

Premios y reconocimientos

Flora y fauna

Visita el campus

Internacionalización

Programas y alianzas

Movilidad

Sobre la Escuela y Bogotá

Convenios internacionales, nacionales y con colegios

Ayuda

PQRSFC

Centro de Ayuda

Contáctenos

Habeas Data

Centro de Servicios Tecnológicos

Directorio Escuela

acriditación institucional
icoMaps

AK. 45 No. 205 - 59, Autopista Norte.

PBX: +57(1) 668 3600 - Bogotá.

Línea nacional gratuita:

018000112668.

Sistema DSPACE - Metabiblioteca | logo