Show simple item record

dc.contributor.authorDiaz Vásquez, Luis Guillermo
dc.contributor.authorArchilla, Adrian
dc.date.accessioned2023-06-20T21:38:44Z
dc.date.available2023-06-20T21:38:44Z
dc.date.issued2011
dc.identifier.issn0361-1981spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2445
dc.description.abstractThe hot-mix asphalt (HMA) rutting prediction model in the Mechanistic–Empirical Pavement Design Guide (MEPDG) uses a relationship that includes the effects of mix characteristics only through the resilient strain, which in turn is a function of the dynamic modulus |E*| of the mix. However, increasing evidence suggests that the use of |E*| alone may be insufficient to characterize completely the permanent deformation behavior of HMA. In addition to effects already considered by the MEPDG model with |E*|, the effects of mix characteristics on permanent deformation are analyzed with the use of the results of repetitive axial permanent deformation tests from laboratory-compacted HMA specimens. Results of multiple linear regression analysis indicate that binder type, effective binder content, and air void content have significant effects on model parameters for permanent deformation. The potential effects of mix characteristics on these parameters are analyzed with the use of the MEPDG model and an HMA pavement section with four levels of compaction. Scenarios in which the mixture characteristics are incorporated solely by means of |E*| are compared with scenarios in which the effects of air void content and asphalt content are incorporated into the rutting prediction model by adjusting its parameters according to relationships established in the laboratory. Empirical laboratory evidence supports the hypotheses that, regardless of mixture properties, universal values for permanent deformation model parameters do not fully account for mixture-specific contributions to rutting and that other mix characteristics (e.g., air void content) may be needed to supplement |E*| for the appropriate characterization of the permanent deformation of asphalt mixtures.eng
dc.description.abstractEl modelo de predicción del ahuellamiento del asfalto mezclado en caliente (HMA) de la Guía de Diseño Mecánico-Empírico de Pavimentos (MEPDG) utiliza una relación que incluye los efectos de las características de la mezcla sólo a través de la deformación elástica, que a su vez es una función del módulo dinámico |E*| de la mezcla. Sin embargo, cada vez hay más pruebas que sugieren que el uso de |E*| por sí solo puede ser insuficiente para caracterizar completamente el comportamiento de deformación permanente del HMA. Además de los efectos ya considerados por el modelo MEPDG con |E*|, los efectos de las características de la mezcla sobre la deformación permanente se analizan con el uso de los resultados de ensayos repetitivos de deformación axial permanente de probetas de HMA compactadas en laboratorio. Los resultados del análisis de regresión lineal múltiple indican que el tipo de ligante, el contenido efectivo de ligante y el contenido de huecos de aire tienen efectos significativos en los parámetros del modelo para la deformación permanente. Los efectos potenciales de las características de la mezcla sobre estos parámetros se analizan con el uso del modelo MEPDG y una sección de pavimento HMA con cuatro niveles de compactación. Se comparan escenarios en los que las características de la mezcla se incorporan únicamente mediante |E*| con escenarios en los que los efectos del contenido en huecos de aire y del contenido en asfalto se incorporan al modelo de predicción del ahuellamiento ajustando sus parámetros según relaciones establecidas en laboratorio. Las pruebas empíricas de laboratorio apoyan la hipótesis de que, independientemente de las propiedades de la mezcla, los valores universales de los parámetros del modelo de deformación permanente no tienen plenamente en cuenta las contribuciones específicas de la mezcla a la formación de roderas y que pueden ser necesarias otras características de la mezcla (por ejemplo, el contenido de huecos de aire) para complementar |E*| para la caracterización adecuada de la deformación permanente de las mezclas asfálticas.spa
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSage Publishingspa
dc.sourcehttps://journals.sagepub.com/doi/abs/10.3141/2210-01spa
dc.titleEffects of Asphalt Mixture Properties on Permanent Deformation Responseeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Geotecniaspa
dc.identifier.doihttps://doi.org/10.3141/2210-01
dc.identifier.eissn2169-4052spa
dc.identifier.urlhttps://journals.sagepub.com/doi/abs/10.3141/2210-01
dc.publisher.placeEstados Unidosspa
dc.relation.citationendpage8spa
dc.relation.citationissue1spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume2210spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalTransportation Research Record: Journal of the Transportation Research Boardeng
dc.relation.referencesARA, Inc., ERES Consultants Division. Guide for Mechanistic– Empirical Design of New and Rehabilitated Pavement Structures. Final report, NCHRP Project 1-37A. Transportation Research Board of the National Academies, Washington, D.C., 2004. http://www.trb.org/mepdg/ guide.htmspa
dc.relation.referencesBiligiri, K. P., K. E. Kaloush, M. S. Mamlouk, and M. W. Witczak. Rational Modeling of Tertiary Flow for Asphalt Mixtures. In Transportation Research Record: Journal of the Transportation Research Board, No. 2001, Transportation Research Board of the National Academies, Washington, D.C., 2007, pp. 63–72.spa
dc.relation.referencesZhou, F., and T. Scullion. Three Stages of Permanent Deformation Curve and Rutting Model. International Journal of Pavement Engineering, Vol. 3, No. 4, 2002, pp. 251–260.spa
dc.relation.referencesZhou, F., T. Scullion, and L. Sun. Verification and Modeling of ThreeStage Permanent Deformation Behavior of Asphalt Mixes. Journal of Transportation Engineering, Vol. 130, No. 4, 2004, pp. 486–494.spa
dc.relation.referencesLeahy, R. B. Permanent Deformation Characteristics of Asphalt Concrete. PhD dissertation. University of Maryland, College Park, Md., 1989.spa
dc.relation.referencesKaloush, K. Simple Performance Test for Permanent Deformation of Asphalt Mixtures. PhD dissertation. Arizona State University, Tempe, Ariz., 2001.spa
dc.relation.referencesMohammad, L. N., Z. Wu, S. Obulareddy, S. Cooper, and C. D. Abadie. Permanent Deformation Analysis of Hot-Mix Asphalt Mixtures Using Simple Performance Tests and 2002 Mechanistic–Empirical Pavement Design Software. In Transportation Research Record: Journal of the Transportation Research Board, No. 1970, Transportation Research Board of the National Academies, Washington, D.C., 2006, pp. 133–142.spa
dc.relation.referencesBirgisson, B., R. Roque, J. Kim, and L. Viet Pham. The Use of Complex Modulus to Characterize the Performance of Asphalt Mixtures and Pavements in Florida. Final report. Report No. 4910-4504-784-12. Florida Department of Transportation, Tallahassee, Fla., 2004.spa
dc.relation.referencesBrown, E., L. Cooley, Jr., D. Hanson, B. Powell, B. Prowell, and D. Watson. NCAT Test Track Design, Construction, and Performance. NCAT Report 2002-12. National Center for Asphalt Technology, Auburn University, Auburn, Ala., November 2002.spa
dc.relation.referencesMyers, L. A., J. Gudimettla, J. D’Angelo, S. Gokhale, and B. Choubane. Evaluation of Performance Data from Repeated Load Test. Proc., 50th Annual Conference of the Canadian Technical Asphalt Association, Victoria, British Columbia, Canada, 2005, pp. 207–224.spa
dc.relation.referencesArchilla, A. R. Effect of Polymer Modified Asphalt Binders on the Performance of Asphalt Concrete Mixes Used in Hawaii. Final report. Prepared for the Hawaii Department of Transportation, Honolulu, 2008.spa
dc.relation.referencesArchilla, A. R., L. G. Diaz, and S. Carpenter. Proposed Method to Determine the Flow Number in Bituminous Mixtures from Repeated Axial Load Tests. Journal of Transportation Engineering, Vol. 133, No. 11, 2007, pp. 610–617.spa
dc.relation.referencesDiaz, L. G., and A. R. Archilla. Effect of Laboratory Data Range Selection in Permanent Deformation Characterization of Asphalt Mixtures. In Transportation Research Record: Journal of the Transportation Research Board, No. 2057, Transportation Research Board of the National Academies, Washington, D.C., 2008, pp. 126–133.spa
dc.relation.referencesArchilla, A. R. Developing Master Curve Predictive Equation Models for Local Conditions: A Case Study for Hawaii. Journal of the Association of Asphalt Paving Technologists, Vol. 79, 2010, pp. 325–364.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record