Mostrar el registro sencillo del ítem

dc.contributor.advisorGarzón Ávila, Lina Ximena
dc.contributor.authorRodríguez Paramo, John Alexander
dc.date.accessioned2024-05-24T16:15:29Z
dc.date.available2024-05-24T16:15:29Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3062
dc.description.abstractLa presente investigación plantea una metodología para modelar numéricamente la capacidad de carga de una cimentación superficial apoyada sobre un suelo fino que presenta variabilidad espacial en sus propiedades físico-mecánicas. Esta modelación se realiza a través del Software Plaxis 2D y los resultados obtenidos se compararon con los encontrados por (Garzón, 2019) en su trabajo de tesis doctoral titulado “Physical modeling of soil spatial variability: application to shallow foundation”.spa
dc.description.abstractThe present research proposes a methodology to numerically model the load capacity of a superficial foundation supported on a fine soil that presents spatial variability in its physical-mechanical properties. This modeling is carried out through the Plaxis 2D Software and the results obtained were compared with those found by Garzón (2019) in his doctoral thesis work titled “Physical modeling of soil spatial variability: application to shallow foundation”.eng
dc.format.extentEl documento consta de 112 páginas, 2 anexos que suman 46 páginas, 1 artículo,spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherEscuela Colombiana de Ingenieríaspa
dc.rightsDerechos Reservados - Escuela Colombiana de Ingeniería Julio Garavitospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourceEscuela Colombiana de Ingeniería Julio Garavito - Recursos propiosspa
dc.titleModelación numérica del ensayo de capacidad de carga de una cimentación superficial apoyada sobre un suelo fino con variabilidad espacial de sus propiedades (límite líquido)spa
dc.title.alternativeNumerical modeling of the load capacity test of a shallow foundation supported on a fine soil with spatial variability of its properties (liquid limit)eng
dc.typeTrabajo de grado - Maestríaspa
dcterms.audienceEstudiantes, Profesores, Comonidad académica y científica en general.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.contributor.juryLozada López, Catalina
dc.contributor.juryGarzón Cubides, Johan Camilo
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Civilspa
dc.identifier.urlhttps://catalogo-intra.escuelaing.edu.co/cgi-bin/koha/catalogue/detail.pl?biblionumber=23735
dc.publisher.placeBogotáspa
dc.publisher.programMaestría en Ingeniería Civilspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesArias Camacho, H. A. (2019). Modelación numérica de la consolidación de un suelo fino con variabilidad espacial de las propiedades del suelo creado físicamente en laboratorio. Escuela Colombiana de Ingeniería Julio Garavito.spa
dc.relation.referencesBaecher, G. B. (1987). Statistical analysis of geotechnical data. US Army Engineer Waterways Experiment Station, Geotechnical Laboratory.spa
dc.relation.referencesBaecher, G. B., & Christian, J. T. (2006). The Influence of Spatial Correlation on the Performance of Earth Structures and Foundations. GeoCongress 2006, 1–6. https://doi.org/10.1061/40803(187)194spa
dc.relation.referencesBauduin, C. (2003). Uncertainties and their relevance for the design of deep excavations near existing structures. In Geotechnical problems with man-made and man influenced ground. 445–449.spa
dc.relation.referencesBhattacharya, S., Demirci, H. E., Nikitas, G., Prakhya, G. K. V., Lombardi, D., Alexander, N. A., Aleem, M., Amani, S., & Mylonakis, G. (2021). Physical modeling of interaction problems in geotechnical engineering. In Modeling in Geotechnical Engineering (pp. 205–256). Elsevier. https://doi.org/10.1016/B978-0-12-821205-9.00017-4spa
dc.relation.referencesBhavikatti, S. S. (2005). Finite element analysis. New Age International.spa
dc.relation.referencesBreysse, D., La Borderie, C., Elachachi, S. M., & Niandou, H. (2007). Spatial variations in soil properties and their influence on structural reliability. Civil Engineering and Environmental Systems, 24(2), 73–83. https://doi.org/10.1080/10286600601156673spa
dc.relation.referencesBrinkgreve, R. B. J. (2004). Plaxis Versión 8 Manual de Referencia (8). Delft University of Technology & PLAXIS bv.spa
dc.relation.referencesChakrabortty, P., & Popescu, R. (2012). Numerical simulation of centrifuge tests on homogeneous and heterogeneous soil models. Computers and Geotechnics, 41, 95–105. https://doi.org/10.1016/j.compgeo.2011.11.008spa
dc.relation.referencesConti, R., Viggiani, G. M. B., & Perugini, F. (2014). Numerical modelling of centrifuge dynamic tests of circular tunnels in dry sand. Acta Geotechnica, 9(4), 597–612. https://doi.org/10.1007/s11440-013-0286-8spa
dc.relation.references108 DeGroot, D. J., & Baecher, G. B. (1993). Estimating Autocovariance of In‐Situ Soil Properties. Journal of Geotechnical Engineering, 119(1), 147–166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147)spa
dc.relation.referencesDíaz-Rodríguez, J. A. (2019). Mecánica de suelos Naturaleza y propiedades: Vol. Segunda edición.spa
dc.relation.referencesDodaro, E., Ventini, R., Pirone, M., Gragnano, C. G., Giretti, D., Gottardi, G., & Fioravante, V. (2022). On the hydromechanical behaviour of an unsaturated river embankment: centrifuge testing and numerical analysis. N International Conference on Physical Modelling in Geotechnics; Proc. Intern. Conf., Daejeon, 19–23.spa
dc.relation.referencesDuncan, J. M., & Member, H. (2000). FACTORS OF SAFETY AND RELIABILITY IN GEOTECHNICAL ENGINEERING. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 307. https://doi.org/https://doi.org/10.1080/10286600601156673spa
dc.relation.referencesEl‐Kadi, A. I., & Williams, S. A. (2000). Generating Two‐Dimensional Fields of Autocorrelated, Normally Distributed Parameters by the Matrix Decomposition Technique. Groundwater, 38(4), 530–532. https://doi.org/10.1111/j.1745-6584.2000.tb00245.xspa
dc.relation.referencesFenton, G. A. (1999). Random Field Modeling of CPT Data. Journal of Geotechnical and Geoenvironmental Engineering, 125(6), 486–498. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(486)spa
dc.relation.referencesFenton, G. A., & Griffiths, V. (2008). Risk assessment in geotechnical engineering (Vol. 461). John Wiley & Sons.spa
dc.relation.referencesFenton, G. A., & Griffiths, D. V. (2002). Probabilistic Foundation Settlement on Spatially Random Soil. Journal of Geotechnical and Geoenvironmental Engineering, 128(5), 381–390. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381)spa
dc.relation.referencesGarzón, L. (2019). Physical modeling of soil spatial variability: application to shallow foundation [Universidad de los Andes]. http://hdl.handle.net/1992/41304spa
dc.relation.referencesGonzález de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2002). Ingeniería geolológia.spa
dc.relation.referencesGriffiths, D., & Fenton, G. (2007). Probabilistic methods in geotechnical engineering. In robabilistic methods in geotechnical engineering (Vol. 491). Springer Science & Business Media.spa
dc.relation.referencesGriffiths, D. V., & Fenton, G. A. (2001). Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Géotechnique, 51(4), 351–359. https://doi.org/10.1680/geot.2001.51.4.351spa
dc.relation.referencesGriffiths, D. V., Fenton, G. A., & Manoharan, N. (2006). Undrained Bearing Capacity of Two-Strip Footings on Spatially Random Soil. International Journal of Geomechanics, 6(6), 421–427. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421)spa
dc.relation.referencesHicher, P.-Y., & Shao, J.-F. (2008). Constitutive Modeling of Soils and Rocks (P. Hicher & J. Shao, Eds.). Wiley. https://doi.org/10.1002/9780470611081spa
dc.relation.referencesHuat, B. B. K., Ali, F. H. J., & Low, T. H. (2006). Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering, 24(5), 1293–1306. https://doi.org/10.1007/s10706-005-1881-8spa
dc.relation.referencesHughes, T. J. (1996). The finite element method: linear static and dynamic finite element analysis. Courier Corporation.spa
dc.relation.referencesINGEOMINAS, & UNIANDES. (1997). Microzonificación sísmica de santafé de Bogotá.spa
dc.relation.referencesJaksa, M. B. (1995). The influence of spatial variability on the geotechnical design properties of a stiff, overconsolidated clay.spa
dc.relation.referencesJames, D. W., & Wells, K. L. (2018). Soil Sample Collection and Handling: Technique Based on Source and Degree of Field Variability (pp. 25–44). https://doi.org/10.2136/sssabookser3.3ed.c3spa
dc.relation.referencesJones, A. L., Kramer, S. L., & Pedro Arduino. (2002). Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering.spa
dc.relation.referencesKulhawy, F. H., & Phoon, K.-K. (1996). Engineering judgment in the evolution from deterministic to reliability-based foundation design. In Proceedings of Uncertainty, 96, 29–48.spa
dc.relation.referencesKulhawy, F., & Mayne, P. (1900). Manual on estimating soil properties for foundation design. Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.spa
dc.relation.referencesLiang, R. Y. K., & Mitchell, J. K. (1988). Centrifuge Evaluation of Numerical Model for Clay. Journal of Geotechnical Engineering, 114(3), 265–283. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:3(265)spa
dc.relation.referencesLumb, P. (1966). The Variability of Natural Soils. Canadian Geotechnical Journal, 3(2), 74–97. https://doi.org/10.1139/t66-009spa
dc.relation.referencesMayne, P. W., Kulhawy, F. H., & Trautmann, C. H. (1995). Laboratory Modeling of Laterally-Loaded Drilled Shafts in Clay. Journal of Geotechnical Engineering, 121(12), 827–835. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(827)spa
dc.relation.referencesNawari, N. O., & Liang, R. (2000). Fuzzy-based approach for determination of characteristic values of measured geotechnical parameters. Canadian Geotechnical Journal, 37(5), 1131–1140. https://doi.org/10.1139/t00-025spa
dc.relation.referencesNg, C. W. W., Boonyarak, T., & Mašín, D. (2013). Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Canadian Geotechnical Journal, 50(9), 935–946. https://doi.org/10.1139/cgj-2012-0445spa
dc.relation.referencesOñate, E. (1996). Perspectivas de modelos constitutivos y técnicas de elementos finitos para análisis de procesos de conformado de metales. Centro Internacional de Métodos Numéricos En Ingeniería.spa
dc.relation.referencesOrchant, C., Kulhawy, F., & Trautmann, C. (1988). Reliability-based foundation design for transmission line structures: Volume 2, Critical evaluation of in situ test methods: Final report.spa
dc.relation.referencesPhoon, K. (1995). Reliability-based design of foundations for transmission line structures. Cornell University.spa
dc.relation.referencesPhoon, K.-K., Cao, Z.-J., Ji, J., Leung, Y. F., Najjar, S., Shuku, T., Tang, C., Yin, Z.-Y., Ikumasa, Y., & Ching, J. (2022). Geotechnical uncertainty, modeling, and decision making. Soils and Foundations, 62(5), 101189. https://doi.org/10.1016/j.sandf.2022.101189spa
dc.relation.referencesPhoon, K.-K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. https://doi.org/https://doi.org/10.1139/t99-038spa
dc.relation.referencesPhoon, K.-K., Kulhawy, F. H., & Grigoriu, M. D. (2003). Development of a Reliability-Based Design Framework for Transmission Line Structure Foundations. Journal of Geotechnical and Geoenvironmental Engineering, 129(9), 798–806. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:9(798)spa
dc.relation.referencesPopescu, R., Deodatis, G., & Nobahar, A. (2005). Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 20(4), 324–341. https://doi.org/10.1016/j.probengmech.2005.06.003spa
dc.relation.referencesRao, S. S. (2017). The finite element method in engineering. Butterworth-heinemann.spa
dc.relation.referencesRosemary, F., Indraratne, S., Weerasooriya, R., & Mishra, U. (2017). Exploring the spatial variability of soil properties in an Alfisol soil catena. In Exploring the spatial variability of soil properties in an Alfisol soil catena (pp. 53–61).spa
dc.relation.referencesSegura, F. R., Luccioni, B. M., & Danesi, R. F. (1999). Integración de la Ecuación Constitutiva para el Modelo de Cam-Clay. Mecánica Computacional, 167–176.spa
dc.relation.referencesSimões, J. T., Neves, L. C., Antão, A. N., & Guerra, N. M. C. (2020). Reliability assessment of shallow foundations on undrained soils considering soil spatial variability. Computers and Geotechnics, 119, 103369. https://doi.org/10.1016/j.compgeo.2019.103369spa
dc.relation.referencesSoubra, A.-H., Youssef, D. S., Massih, A., & Kalfa, M. (2008). Bearing capacity of foundations resting on a spatially random soil.spa
dc.relation.referencesSpry, M., Kulhawy, F., & Grigoriu, M. (1988). Reliability-based foundation design for transmission line structures: Volume 1, Geotechnical site characterization strategy (No. EPRI-EL-5507-Vol. 1). Electric Power Research Inst.spa
dc.relation.referencesVanmarcke, E. (1988). Fundamentals of Analysis of Random Fields. In Random Fields. WORLD SCIENTIFIC. https://doi.org/10.1142/9789814307598_0002spa
dc.relation.referencesVanmarcke, E. H. (1977). Probabilistic Modeling of Soil Profiles. Journal of the Geotechnical Engineering Division, 103(11), 1227–1246. https://doi.org/10.1061/AJGEB6.0000517spa
dc.relation.referencesVanmarcke, E., Shinozuka, M., Nakagiri, S., Schuëller, G. I., & Grigoriu, M. (1986). Random fields and stochastic finite elements. Structural Safety, 3(3–4), 143–166. https://doi.org/10.1016/0167-4730(86)90002-0spa
dc.relation.referencesVargas, O., Ruge, C., & Pinto Da Cunha, R. (2019). Factor miedo: subjetividad como variable asociada a la gestión de factores de seguridad en el diseño de problemas geotécnicos. https://doi.org/10.3233/STAL190335spa
dc.relation.referencesWang, W., Pan, S. J., Dahlmeier, D., & Xiao, X. (2016). Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis. http://arxiv.org/abs/1603.06679spa
dc.relation.referencesYamazaki, F., & Shinozuka, M. (1988). Digital Generation of Non‐Gaussian Stochastic Fields. Journal of Engineering Mechanics, 114(7), 1183–1197. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:7(1183)spa
dc.relation.referencesYamin, M. (2016). Problem solving in foundation engineering using FoundationPro. Springer.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.armarcSuelos - Composición
dc.subject.armarcSuelos - Análisis
dc.subject.armarcTextura de suelos
dc.subject.armarcCargas dinámicas (Pavimentos)
dc.subject.armarcAnálisis estructural (Ingeniería)
dc.subject.proposalModelación numéricaspa
dc.subject.proposalCapacidad de cargaspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalVariabilidad espacialspa
dc.subject.proposalCimentación superficialspa
dc.subject.proposalCoeficiente de variaciónspa
dc.subject.proposalDistancia de correlación horizontalspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Escuela Colombiana de Ingeniería Julio Garavito
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Escuela Colombiana de Ingeniería Julio Garavito