Mostrar el registro sencillo del ítem

dc.contributor.advisorSantos Granados, German Ricardo
dc.contributor.authorWilches Kochinski, Edna Jessica
dc.date.accessioned2024-06-18T14:48:54Z
dc.date.available2024-06-18T14:48:54Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3107
dc.descriptionmaterial ilustrativo, graficas con coloresspa
dc.description.abstractThis research focuses on the development of a hydrodynamic and water quality model to simulate the spillage event that occurred in the “Buenavista del Cobre” copper mine in the Bacanuchi river basin in 2014. This incident remains ambiguous since there is a lack of an initial estimation of the spilled volume as well as a model that describes the hydrodynamics of the spill and its impact on water quality. To address this, a hydrodynamic and water quality model was developed. The hydrodynamic model was set up and run in HEC-RAS. The model presented stability issues associated to steep slopes, low flows and hydraulic jumps, which limited the application of HEC-RAS in the first sections of the Tinajas stream and the Sonora river. Nevertheless, the model provided an estimated travel time for the spill from the Tinajas stream to the city of Arizpe of 10-13 hours. Additionally, a Python script using different reservoir capacity curves, initial volumes and outflow pipe diameters was developed to estimate the spilled volume of enriched copper solution. The results estimated the volume between 42,000-45,000 m3. Regarding water quality, the model was set up and run in AQUASIM with parameters selected based on concentration levels observed in samples of the spilled solution. These include Fe, Al, Cu, Mn, Zn, Pb, Cd, Cr, and As. CaCO3, SO4-2, CO3-2, and OH- were also considered due to their presence in the river, as well as their reactive potential with metals under varying pH conditions and level concentrations. Notably, concentrations of all metallic elements exceeded the official permissible limits for drinking water and human use (NOM-127-SSA1-2021) for 3 to 5 hours along the Tinajas stream and Bacanuchi river. The model identified that the contaminant plume behaved as piston flow while travelling along the river system. Other findings include the low propensity of precipitation of the metals due to the acidic conditions created in the river as a consequence of the spill, potentially extending contamination to the Bacanuchi and Sonora aquifers. Although these models provide a tool to assess the spill’s dynamics and impacts along the Tinajas streams and Bacanuchi rivers, limitations including data availability, computational constraints, and time were involved. Future research could include the influence of hurricanes Norberto and Odile on the spill's hydrodynamic and water quality effects, employ a modelling software capable of handling channels with steep gradients, low flows, and hydraulic jumps to represent the Sonora river's dynamics, as well as extending the water quality model to the river , and develop a groundwater model for a comprehensive assessment of the spill's impact on the basin.  eng
dc.description.tableofcontentsTable of Contents ii Abstract 1 Acknowledgments 2 1. Introduction 3 1.1 Background 3 1.2 Research problem and justification 5 1.3 Research objectives and research questions 6 1.3.1 Research Questions 6 1.3.2 General Objective 6 1.3.3 Specific Objectives 6 2. Literature review 7 2.1 Hydrodynamic and water quality models 7 2.2 Hydrodynamic and water quality model application 8 2.3 Previous studies related to the spillage incident 11 3. Research methodology 13 3.1 Description of the case study 13 3.2 Research approach 14 3.3 Methodology 15 3.3.1 Data collection 15 3.3.2 Hydrodynamic model set up 15 3.3.3 Estimation of spilled outflow discharge and sensitivity analysis 19 3.3.3.1 Initial data and reservoir’s capacity curve 19 3.3.3.2 Python script development 21 3.3.4 Hydrodynamic model simulations 24 3.3.5 Hydrodynamic model extension 25 3.3.5.1 Wave approximation zones 29 3.3.6 Water quality model set up 32 3.3.6.1 Simplification of the hydrodynamic system 32 3.3.6.2 Physicochemical parameters identification 34 3.3.6.3 Chemical reactions 38 3.3.6.4 Computational Parameters 40 4. Results and analysis 41 4.1 Hydrodynamic model 41 4.1.1 Kinematic Wave Routing 41 4.1.2 Hydrodynamic model set up 42 4.1.3 Estimation of spilled outflow discharge and uncertainty analysis 43 4.1.4 HEC-RAS simulations 47 4.1.5 Hydrodynamic model extension 53 4.1.5.1 Flow profile and wave approximation zones 55 4.2 Water quality 57 4.2.1 AQUASIM Hydrodynamic set up 57 4.2.2 Water quality modelling results 58 4.2.2.1 Comparison with Drinking Water Regulations 66 4.2.2.2 Model validation 67 5. Discussion 71 6. Limitations 73 7. Conclusions and Recommendations 74 8. References 75 9. Appendices 79 9.1 Appendix A - Key chemical reactions in the river 79 9.2 Appendix B- Research Ethics Declaration Form 82eng
dc.format.extent88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEscuela Colombiana de Ingenieríaspa
dc.titleAssessment of mine spillage effects on receiving waters: hydrodynamic and water quality studies on Bacanuchi river, Mexico.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.contributor.corporatenameIHE Delft Institute for Water Educationspa
dc.coverage.regionSonora,Mexico
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Civilspa
dc.identifier.urlhttps://catalogo-intra.escuelaing.edu.co/cgi-bin/koha/catalogue/detail.pl?biblionumber=23759
dc.publisher.placeDelft, Paises Bajosspa
dc.publisher.programMaestría en Ingeniería Civilspa
dc.relation.indexedN/Aspa
dc.relation.referencesAli, M. H. (2018). Framework for improving flood models by integrating crowdsourced data in the poorly gauged catchment of Kifissos, Greece. Alzahrani, A. S. (2017). APPLICATION OF TWO-DIMENSIONAL HYDRAULIC MODELING IN RIVERINE SYSTEMS USING HEC-RAS. Ashane, W., Fernando, M., Ilankoon, K., Syed, T. H., & Yellishetty, M. (2017). Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. https://doi.org/10.1016/j.mineng.2017.12.004 Atkins, P., De Paula, J., & Keeler, J. (2014). Atkin’s Physical Chemistry (11th ed.). Oxford University Press. Betrie, G. D., Tesfamariam, S., Morin, K. A., & Sadiq, R. (2013). Predicting copper concentrations in acid mine drainage: A comparative analysis of five machine learning techniques. Environmental Monitoring and Assessment, 185(5), 4171–4182. https://doi.org/10.1007/s10661-012-2859-7 Bruner, G. (n.d.). Common Model Stability Problems for Dam Break Analysis. Calmus, T., Valencia Moreno, M., Del Rio Salas, M., Ochoa Landin, L., & Mendivil, H. (2016). Geological and geochemical “Baseline” study in the framework of the environmental impact assessment associated with the leachate dam spill from the Buenavista del Cobre mine into the Sonora river basin. Ceniceros-Gómez, A. E., Gutiérrez Ruiz, M. E., Romero, F. M., Gerardo, M. J. L., & Raquel, D. M. (2018). Monitored natural attenuation of heavy metals in the sonora river: The water quality. Revista Internacional de Contaminacion Ambiental, 34, 267–270. Chow, V. Te, Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. McGraw-Hill. Chow, V. T. (1959). Open Channel Hydraulics . The Blackburn Press New Jersey. CONAGUA. (2014). Informe de inspeccion. Represo “Tinajas 2.” Costa, M. C., & Duarte, J. C. (2005). BIOREMEDIATION OF ACID MINE DRAINAGE USING ACIDIC SOIL AND ORGANIC WASTES FOR PROMOTING SULPHATE-REDUCING BACTERIA ACTIVITY ON A COLUMN REACTOR. Escobar-Quiroz, I., Villalobos, M., Pi-Puig Tereza, Martin Romero, F., & Aguilar, J. (2019). Identification of jarosite and other major mineral Fe phases in acidic environments affected by mining-metallurgy using X-ray Absorption Spectroscopy: With special emphasis on the August 2014 Cananea acid spill. Revista Mexicana de Ciencias Geologicas, 36(2). http://www.redalyc.org/articulo.oa?id=57265251007 Fan, C., Ko, C. H., & Wang, W. S. (2009). An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation. Journal of Environmental Management, 90(5), 1824–1832. https://doi.org/10.1016/J.JENVMAN.2008.11.011 Gutierrez-Ruiz, M., Muro-Puente, A., Ceniceros-Gómez, A. E., Amaro-Ramírez, D., Pérez-Manzanera, L., Martínez-Jardines, L. G., & Romero, F. (2022). Acid spill impact on Sonora River basin. Part I. sediments: Affected area, pollutant geochemistry and health aspects. Journal of Environmental Management, 314. https://doi.org/10.1016/j.jenvman.2022.115032 Hernandez Angulo, L. R. (2020). Modelación de metales pesados en ríos. Caso de estudio: Cuenca baja del río Cesar. Husserl, J. (2016). Fundamentos de quimica para ingenieros ambientales. Universidad de Los Andes. Jacobs, J. A. (James A., Lehr, J. H., & Testa, S. M. (2014). Acid mine drainage, rock drainage, and acid sulfate soils : causes, assessment, prediction, prevention, and remediation. John Wiley & Sons, Inc. Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. https://doi.org/10.1016/j.scitotenv.2004.09.002 Laboratorios ABC Quimica de Investigacion y Analisis S.A. (2014). Informe de resultados del muestreo y analisi de agua, sedimentos y biota de los Rios Bacanuchi y Sonora Contaminados por la fuga proveniente de la mina Buenavista del cobre en Cananea, hasta el 18 de septiembre de 2014. León García, G. J., Meza-Figueroa, D., Leobardo Valenzuela, J., Encinas-Romero, M. A., Valenzuela-García, J., Villalba-Atondo, A., Encinas-Soto, K., Gómez-Álvarez, A., & Encinas, L. (2018). Study of Heavy Metal Pollution in Arid and Semi-Arid Regions Due to Mining Activity: Sonora and Bacanuchi Rivers. https://doi.org/10.19080/IJESNR.2018.10.555804 Liu, R., Li, Z., Xin, X., Liu, D., Zhang, J., & Yang, Z. (2022). Water balance computation and water quality improvement evaluation for Yanghe Basin in a semiarid area of North China using coupled MIKE SHE/MIKE 11 modeling. 22, 1062. https://doi.org/10.2166/ws.2021.214 Marchioretto, M. M., Bruning, H., & Rulkens, W. (2005). Heavy Metals Precipitation in Sewage Sludge. Separation Science and Technology, 40(16), 3393–3405. https://doi.org/10.1080/01496390500423748 Martins, B. de A., & Takahashi, J. A. (2022). Metal-Rich Mine-Tailing Spills in Brazil and the Consequences for the Surrounding Water Bodies. Water, Air, & Soil Pollution, 233(11), 473. https://doi.org/10.1007/s11270-022-05925-x Moussa, R., & Bocquillon, C. (2000). Approximation zones of the Saint-Venant equations f flood routing with overbank flow. Hydrology and Earth System Sciences, 4(2), 251–260. https://doi.org/10.5194/hess-4-251-2000 Nobahar, A., Melka, A. B., Pusta, A., João, ·, Lourenço, P., Dias Carlier, J., & Clara Costa, M. (2022). A New Application of Solvent Extraction to Separate Copper from Extreme Acid Mine Drainage Producing Solutions for Electrochemical and Biological Recovery Processes. 41, 387–401. https://doi.org/10.1007/s10230-022-00858-7 Rangel Medina, M. (2019). El Rio Sonora: Analisis de la Contingencia de 2014. Reichert, P. (1998). AQUASIM 2.0 Tutorial Computer Program for the Identiication and Simulation of Aquatic Systems. Swiss Federal Institute for Environmental Science and Technology (EAWAG). Romero Fransisco. (2022). Synthesis, analysis and interpretation of the information published on the spill of some 40,000 m3 of ferro-copper acid solution from the Buenavista del Cobre Mine. Romero-Lázaro, E. M., Ramos-Pérez, D., Romero, F. M., & Sedov, S. (2019). Indirect indicators of residual contamination in soils and sediments of the Sonora river basin, Mexico. Revista Internacional de Contaminacion Ambiental, 35(2), 371–386. https://doi.org/10.20937/RICA.2019.35.02.09 Romo-Morales, D., Moreno-Rodríguez, V., Molina-Freaner, F., Valencia-Moreno, M., Ruiz, J., Minjárez-Osorio, C., Hernández-Mendiola, E., & del Rio-Salas, R. (2020). Assessment of Geogenic and Anthropogenic Pollution Sources Using an Aquatic Plant Along the Sonora River Basin: Insights from Elemental Concentrations and Pb Isotope Signatures. Natural Resources Research, 29(4), 2773–2786. https://doi.org/10.1007/s11053-020-09620-8 Sánchez España, J. (2007). The Behavior of Iron and Aluminum in Acid Mine Drainage: Speciation, Mineralogy, and Environmental Significance. Secretaria de Salud. (2021). Norma Oficial Mexicana NOM-127-SSA1-2021, Agua para uso y consumo humano. Limites permisibles de la calidad de agua. Shabani, A., Woznicki, S. A., Mehaffey, M., Butcher, J., Wool, T. A., & Whung, P. Y. (2021). A coupled hydrodynamic (HEC-RAS 2D) and water quality model (WASP) for simulating flood-induced soil, sediment, and contaminant transport. Journal of Flood Risk Management, 14(4). https://doi.org/10.1111/jfr3.12747 Smith, A. A. (1980). A generalized approach to kinematic flood routing. Journal of Hydrology, 45(1–2), 71–89. https://doi.org/10.1016/0022-1694(80)90006-2 Taylor, M. P., & Little, J. A. (2013). Environmental impact of a major copper mine spill on a river and floodplain system. Anthropocene, 3, 36–50. https://doi.org/10.1016/j.ancene.2014.02.004 Umutoni, A. (2023). Hydrodynamic simulation of a plume propagation event on the Sonora River, Mexico. IHE Delft. U.S Army Corps of Engineers. (2016). HEC-RAS River Analysis System Hydraulic Reference Manual. Walser, G. (2002). Economic Impact of world mining . World Bank Group Mining Department. Watling, H. R., Elliot, A. D., Maley, M., van Bronswijk, W., & Hunter, C. (2009). Leaching of a low-grade, copper–nickel sulfide ore. 1. Key parameters impacting on Cu recovery during column bioleaching. Hydrometallurgy, 97(3–4), 204–212. https://doi.org/10.1016/j.hydromet.2009.03.006 Webb, J. A., & Sasowsky, I. D. (1994). The interaction of acid mine drainage with a carbonate terrane: evidence from the Obey River, north-central Tennessee. Journal of Hydrology, 161(1–4), 327–346. https://doi.org/10.1016/0022-1694(94)90133-3 Zakaullah, Ejaz, N., & Zafar, A. (2022). An Integrated Approach for Water Quality Modelling of Soan River Using HEC-RAS. Journal of Applied Engineering Sciences, 12(1), 121–128. https://doi.org/10.2478/jaes-2022-0017 Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., Kleeberg, A., McInnes, R., Kristiansen, S. M., Petersen, R. J., Liu, H., & Goldhammer, T. (2021). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 212, 103446. https://doi.org/10.1016/J.EARSCIREV.2020.103446 Zhou, L., Wu, F., Meng, Y., Byrne, P., Ghomshei, M., & Abbaspour, K. C. (2023). Modeling transport and fate of heavy metals at the watershed scale: State-of-the-art and future directions. In Science of the Total Environment (Vol. 878). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.163087 Zhou, N., Westrich, B., Jiang, S., & Wang, Y. (2011). A coupling simulation based on a hydrodynamics and water quality model of the Pearl River Delta, China. Journal of Hydrology, 396(3–4), 267–276. https://doi.org/10.1016/j.jhydrol.2010.11.019 Ziegler-Rivera, F. R. A., Prado, B., Gastelum-strozzi, A., Márquez, J., Mora, L., Robles, A., & González, B. (2021). Computed tomography assessment of soil and sediment porosity modifications from exposure to an acid copper sulfate solution. Journal of South American Earth Sciences, 108. https://doi.org/10.1016/j.jsames.2021.103194  spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.armarcIngeniería hidráulica
dc.subject.armarcCalidad del agua
dc.subject.armarcContaminación del agua
dc.subject.armarcHidrodinámica
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem