Mostrar el registro sencillo del ítem

dc.contributor.authorCarvajal Cardenas, Daniel
dc.contributor.authorLozada, Catalina
dc.date.accessioned2024-06-25T19:39:53Z
dc.date.available2024-06-25T19:39:53Z
dc.date.issued2023
dc.identifier.issn1938-6362spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3125
dc.description.abstractDesiccation in soils leads to a loss of water content, increasing soil suction, which in turn, leads to higher shear strength. Drying paths in soils are produced by water uptake by plants or by evaporation due to extreme seasonal changes. This study presents the results of geotechnical centrifuge tests on the effect of water content on deformations and on the failure mechanism of a slope in fine soil. The failure mechanism and the resulting displacements obtained in the experiments were determined using image analysis using the GeoPIV_RG software. The results show a significant effect of soil suction on the failure mechanism. For saturated soils, the slope suffers an abrupt failure mechanism due to shear strength, while for partially saturated soils, this mechanism is modified and the magnitude of deformations diminishes as soil suction increases. Meanwhile, the size of the traction crack decreases as suction levels increase due to the increase in tensile strength produced by the loss of water contenteng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTaylor & Francis Groupspa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.tandfonline.com/doi/citedby/10.1080/19386362.2023.2165893?scroll=top&needAccess=truespa
dc.titlePhysical modeling of desiccated slopes in fine soil using a geotechnical centrifugeeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Geotecniaspa
dc.identifier.doiDOI: 10.1080/19386362.2023.2165893
dc.identifier.eissn1939-7879spa
dc.identifier.urlhttps://www.tandfonline.com/doi/citedby/10.1080/19386362.2023.2165893?scroll=top&needAccess=true
dc.relation.citationendpage9spa
dc.relation.citationissue1spa
dc.relation.citationstartpage2spa
dc.relation.citationvolume17spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalInternational Journal of Geotechnical Engineeringeng
dc.relation.referencesASTM Standard. 2007. “Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper.” Annual Book of ASTM Standards, Soil and Rock (I). Vol. 4, D5298–03. ASTM International: West Conshohocken, PA.spa
dc.relation.referencesBatali, L., & C. Andreea. 2016. “Slope Stability Analysis Using the Unsaturated Stress Analysis.” Case Study Procedia Engineering 143: 284–291. doi:10.1016/j.proeng.2016.06.036.spa
dc.relation.referencesCaicedo, B., and L. Thorel. 2014. “Principles of Physical Modelling of Unsaturated Soils.” Proceedings of the 8th International Conference on Physical Modelling in Geotechnics 2014 Perth, Australia, ICPMG2014, London: CRC Press.spa
dc.relation.referencesEring, P., and G. S. Babu. 2016. “Probabilistic Back Analysis of Rainfall Induced Landslide‐a Case Study of Malin Landslide, India.” Engineering Geology 208: 154–164. doi:10.1016/j.enggeo.2016.05.002.spa
dc.relation.referencesFredlund, D. G., N. R. Morgenstern, and R. A. Widger. 1978. “The Shear Strength of Unsaturated Soils.” Canadian Geotechnical Journal 15 (3): 313–321. doi:10.1139/t78-029.spa
dc.relation.referencesGan, J. K. M., D. G. Fredlund, and H. Rahardjo. 1988. “Determination of the Shear Strength Parameters of an Unsaturated Soil Using the Direct Shear Test.” Canadian Geotechnical Journal 25 (3): 500–510. doi:10. 1139/t88-055.spa
dc.relation.referencesGarnier, J., C. Gaudin, S. M. Springman, P. J. Culligan, D. J. Goodings, D. Konig, B. L. Kutter, R. Phillips, M. F. Randolph, and L. Thorel. 2007. “Catalogue of Scaling Laws and Similitude Questions in Geotechnical Centrifuge Modelling.” International Journal of Physical Modelling in Geotechnics 7 (3): 1–23. doi:10.1680/ijpmg.2007.070301.spa
dc.relation.referencesGasmo, J. M., H. Rahardjo, and E. C. Leong. 2000. “Infiltration Effects on Stability of a Residual Soil Slope.” Computers and Geotechnics 26 (2): 145–165. doi:10.1016/S0266-352X(99)00035-X.spa
dc.relation.referencesGriffiths, D. V., and N. Lu. 2005. “Unsaturated Slope Stability Analysis with Steady Infiltration or Evaporation Using Elasto-Plastic Finite Elements.” International Journal for Numerical and Analytical Methods in Geomechanics 29 (3): 249–267. doi:10.1002/nag.413.spa
dc.relation.referencesHarris, C., J. S. Smith, M. C. R. Davies, and B. Rea. 2008. “An Investigation of Periglacial Slope Stability in Relation to Soil Properties Based on Physical Modelling in the Geotechnical Centrifuge.” Geomorphology 93 (3–4): 437–459. doi:10.1016/j.geomorph.2007.03.009.spa
dc.relation.referencesHuat, B. B., F. H. Ali, and T. H. Low. 2006. “Water Infiltration Characteristics of Unsaturated Soil Slope and Its Effect on Suction and Stability.” Geotechnical & Geological Engineering 24 (5): 1293–1306. doi:10.1007/s10706-005-1881-8.spa
dc.relation.referencesHung, W. Y., M. C. Tran, F. H. Yeh, C. W. Lu, and L. Ge. 2020. “Centrifuge Modeling of Failure Behaviors of Sandy Slope Caused by Gravity, Rainfall, and Base Shaking.” Engineering Geology 271: 105609. doi:10.1016/j.enggeo.2020.105609.spa
dc.relation.referencesIPCC. 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Pörtner, H. O., D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama. Cambridge, UK and New York, NY, USA: Cambridge University Press. doi:10.1017/9781009325844.spa
dc.relation.referencesKim, J., Y. Kim, S. Jeong, and M. Hong. 2017. “Rainfall-Induced Landslides by Deficit Field Matric Suction in Unsaturated Soil Slopes.” Environmental Earth Sciences 76 (23): 1–17. doi:10.1007/ s12665-017-7127-2.spa
dc.relation.referencesLing, H., and H. I. Ling. 2012. “Centrifuge Model Simulations of Rainfall-Induced Slope Instability.” Journal of Geotechnical and Geoenvironmental Engineering 138 (9): 1151–1157. doi:10.1061/(asce) gt.1943-5606.0000679.spa
dc.relation.referencesLozada, C., B. Caicedo, and L. Thorel. 2015. “Effects of Cracks and Desiccation on the Bearing Capacity of Soil Deposits.” Géotechnique Letters 5 (3): 112–117. doi:10.1680/jgele.15.00021.spa
dc.relation.referencesMatziaris, V., A. M. Marshall, and Y. Hai-Sui. 2015. “Centrifuge Model Test of Rainfall-Induced Landslides.” Recent Advances in Modeling Landslides and Debris Flows: Springer 73–83. doi:10.1007/978-3-319- 11053-0.spa
dc.relation.referencesMichalowski, R. L. 2013. “Stability Assessment of Slopes with Cracks Using Limit Analysis.” Canadian Geotechnical Journal 50 (10): 1011–1021. doi:10.1139/cgj-2012-0448.spa
dc.relation.referencesMualem, Y. 1976. “A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media.” Water Resources Research 12 (3): 513–522. doi:10.1029/WR012i003p00513.spa
dc.relation.referencesOh, S., and N. Lu. 2015. “Slope Stability Analysis Under Unsaturated Conditions: Case Studies of Rainfall-Induced Failure of Cut Slopes.” Engineering Geology 184: 96–103. doi:10.1016/j.enggeo.2014.11.007.spa
dc.relation.referencesPark, D., and R. L. Michalowski. 2017. “Three-Dimensional Stability Analysis of Slopes in Hard Soil/Soft Rock with Tensile Strength Cut-Off.” Engineering Geology 229: 73–84. doi:10.1016/j.enggeo.2017. 09.018.spa
dc.relation.referencesRahardjo, H., T. H. Ong, R. B. Rezaur, and E. C. Leong. 2007. “Factors Controlling Instability of Homogeneous Soil Slopes Under Rainfall.” Journal of Geotechnical and Geoenvironmental Engineering 133 (12): 1532–1543. doi:10.1061/(ASCE)1090-0241(2007)133:12(1532).spa
dc.relation.referencesSpringman, S. M., C. Jommi, and P. Teysseire. 2003. “Instabilities on Moraine Slopes Induced by Loss of Suction: A Case History.” Géotechnique 53 (1): 3–10. doi:10.1680/geot.2003.53.1.3.spa
dc.relation.referencesStanier, S. A., J. Blaber, W. A. Take, and D. J. White. 2016. “Improved Image-Based Deformation Measurement for Geotechnical Applications.” Canadian Geotechnical Journal 53 (5): 727–739. doi:10.1139/cgj-2015-0253.spa
dc.relation.referencesTang, L., Z. Zhao, Z. Luo, and Y. Sun. 2019. “What is the Role of Tensile Cracks in Cohesive Slopes?” Journal of Rock Mechanics and Geotechnical Engineering 11 (2): 314–324. doi:10.1016/j.jrmge.2018. 09.007.spa
dc.relation.referencesTaylor, R. N. 2018. Geotechnical Centrifuge Technology. London and New York: CRC Press.spa
dc.relation.referencesThorel, L., V. Ferber, B. Caicedo, and I. M. Khokha. 2011. “Physical Modelling of Wetting-Induced Collapse in Embankment Base.” Géotechnique 61 (5): 409–420. doi:10.1680/geot.10.P.029.spa
dc.relation.referencesTrabelsi, H., M. Jamei, H. Zenzri, and S. Olivella. 2012. “Crack Patterns in Clayey Soils: Experiments and Modeling.” International Journal for Numerical and Analytical Methods in Geomechanics 36 (11): 1410–1433. doi:10.1002/nag.1060.spa
dc.relation.referencesTsuha, C. D. H. C., J. M. S. M. dos Santos Filho, and T. D. C. Santos. 2015. “Helical Piles in Unsaturated Structured Soil: A Case Study.” Canadian Geotechnical Journal 53 (1): 103–117.spa
dc.relation.referencesVanapalli, S. K., D. G. Fredlund, D. E. Pufahl, and A. W. Clifton. 1996. “Model for the Prediction of Shear Strength with Respect to Soil Suction.” Canadian Geotechnical Journal 33 (3): 379–392. doi:10. 1139/t96-060.spa
dc.relation.referencesVanapalli, S.K., and F. M. O. Mohamed. 2013. “Bearing Capacity and Settlement of Footings in Unsaturated Sands.” International Journal of Geomate 5 (9): 595–604.spa
dc.relation.referencesvan Genuchten, M. T. 1980. “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.” Soil Science Society of America Journal 44 (5): 892–898. doi:10.2136/sssaj1980. 03615995004400050002x.spa
dc.relation.referencesvan Genuchten, M. T., F. J. Leij, and S. R. Yates. 1991. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils. Hoboken, NJ USA: John Wiley & Sons, Incspa
dc.relation.referencesWang, S., G. Idinger, and W. Wu. 2021. “Centrifuge Modelling of Rainfall-Induced Slope Failure in Variably Saturated Soil.” Acta Geotechnica 16 (9): 2899–2916. doi:10.1007/s11440-021-01169-x.spa
dc.relation.referencesWang, R., G. Zhang, and J. M. Zhang. 2010. “Centrifuge Modelling of Clay Slope with Montmorillonite Weak Layer Under Rainfall Conditions.” Applied Clay Science 50 (3): 386–394. doi:10.1016/j.clay. 2010.09.002.spa
dc.relation.referencesWhite, D. J., and W. Take. 2002. GeoPiv : Particle Image Velocimetry (PIV) Software for Use in Geotechnical Testing. Cambridge: University of Cambridge Department of Engineering UK. Technical Report CUED/D-SOILS/TR322.spa
dc.relation.referencesYang, K. H., T. S. Nguyen, H. Rahardjo, and D. G. Lin. 2021. “Deformation Characteristics of Unstable Shallow Slopes Triggered by Rainfall Infiltration.” Bulletin of Engineering Geology and the Environment 80 (1): 317–344. doi:10.1007/s10064-020-01942-4.spa
dc.relation.referencesYu, Y., L. Deng, X. Sun, and H. Lu. 2008. “Centrifuge Modeling of a Dry Sandy Slope Response to Earthquake Loading.” Bulletin of Earthquake Engineering 6 (3): 447–461. doi:10.1007/s10518-008-9070-9.spa
dc.relation.referencesZhang, L. L., J. Zhang, L. M. Zhang, and W. H. Tang. 2011. “Stability Analysis of Rainfall-Induced Slope Failure: A Review.” Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 164 (5): 299–316. doi:10.1680/geng.2011.164.5.299.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalSuctioneng
dc.subject.proposalCentrifuge modellingeng
dc.subject.proposalSlopeseng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/