Mostrar el registro sencillo del ítem

dc.contributor.authorLozada, Catalina
dc.contributor.authorMendoza, Cristhian
dc.contributor.authorAmortegui, Jose Vicentespa
dc.date.accessioned2024-06-25T20:47:10Z
dc.date.available2024-06-25T20:47:10Z
dc.date.issued2022
dc.identifier.issn1735-0522spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/3126
dc.description.abstractThe purpose of this study was to explore the influence of vegetation on the stability of clayey slopes. Physical models with varying layer depths reinforced with roots were performed in a geotechnical centrifuge. The soil reinforced with vegetation was simulated with a mixture of clay and fiberglass which present similar shear strength properties. Displacement vectors of the physical models are obtained using the Particle Image Velocimetry (PIV). The computed resultant displacements showed that the slip surface varied with respect the root depth. Additionally, numerical models of the tests in centrifuge were made using finite elements and Bishop’s method. The results obtained also show that the deeper the roots, the deeper the sliding surface. The slip surface moves from a depth of the slope toe (slope without reinforcement) to a depth close to twice the height of the slope. Regarding the factor of safety, it varies from a value of 0.7 for slopes without vegetation to 1.19 for a root depth of three meters. Moreover, the factor of safety increases as root depth increases.eng
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringer Naturespa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://link.springer.com/article/10.1007/s40999-022-00733-0#citeasspa
dc.titlePhysical and numerical modeling of clayey slopes reinforced with rootseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación en Geotecniaspa
dc.identifier.doihttps://doi.org/10.1007/s40999-022-00733-0(0123456789().,-volV)(0123456789(). ,- volV)
dc.identifier.eissn2383-3874spa
dc.identifier.urlhttps://link.springer.com/article/10.1007/s40999-022-00733-0#citeas
dc.relation.citationedition22 de junio de 2022spa
dc.relation.citationendpage1128spa
dc.relation.citationstartpage1115spa
dc.relation.citationvolume20spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalInternational Journal of Civil Engineeringeng
dc.relation.referencesFan C-C, Su C-F (2008) Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecol Eng 33:157–166. https://doi.org/10.1016/j.ecoleng.2008.02.013.spa
dc.relation.referencesMickovski SB, Van Beek LPH (2009) Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate. Plant Soil 324:43–56. https://doi.org/10.1007/s11104-009-0130-y.spa
dc.relation.referencesNawagamuwa UP, Sarangan S, Janagan B, Neerajapriya S (2014) Study on the effect of plant roots for stability of slopes. In: Landslide Science for a Safer Geoenvironment. Springer International Publishing, Cham, pp 153–158. https://doi.org/10.1007/ 978-3-319-05050-8_25.spa
dc.relation.referencesChenari RJ, Pishkhani SS, Fard MK, Sosahab JS (2018) Experimental and numerical investigation of dynamic properties of soil stabilized by young Vetiver. Ital Geotech J 52(1):49–58. https:// doi.org/10.19199/2017.4.0557-1405.47.spa
dc.relation.referencesForesta V, Capobianco V, Cascini L (2020) Influence of grass roots on shear strength of pyroclastic soils. Can Geotech J 57:1320–1334. https://doi.org/10.1139/cgj-2019-0142.spa
dc.relation.referencesToulegilan MM, Chenari RJ, Neshaei MAL, Forghani A (2020) Changes in stability conditions of clay slopes due to leaching: a case study. SN Appl Sci 2(6):1–10. https://doi.org/10.1007/ s42452-020-2831-z.spa
dc.relation.referencesFan C-C, Lai Y-F (2014) Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil 377:83–95. https:// doi.org/10.1007/s11104-012-1569-9.spa
dc.relation.referencesLiang T, Bengough AG, Knappett JA, MuirWood D, Loades KW, Hallett PD, Boldrin D, Leung AK, Meijer GJ (2017) Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecol Eng 109:207–227. https://doi.org/10.1016/j.eco leng.2017.06.067.spa
dc.relation.referencesChiatante D, Scippa SG, Di Iorio A, Sarnataro M (2002) The influence of steep slopes on root system development. J Plant Growth Regul 21:247–260. https://doi.org/10.1007/s00344-003- 0012-0.spa
dc.relation.referencesBurylo M, Hudek C, Rey F (2011) Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). CATENA 84:70–78. https://doi.org/10. 1016/j.catena.2010.09.007.spa
dc.relation.referencesGhestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, Stokes A (2014) A framework for identifying plant species to be used as ecological engineers for fixing soil on unstable slopes. PLoS ONE 9:8. https://doi.org/10.1371/journal.pone.0095876.spa
dc.relation.referencesGarnier J, Gaudin C, Springman SM, Culligan PJ, Goodings D, Konig D, Kutter B, Phillips R, Randolph MF, Thorel L (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Model Geotech 7(3):1–23. https://doi.org/10.1680/ijpmg.2007.070301.spa
dc.relation.referencesTl C, Zhou C, Gl W, El L, Dai F (2017) Centrifuge model test on unsaturated expansive soil slopes with cyclic wetting–drying and inundation at the slope toe. Int J Civ Eng 16:1341–1360. https:// doi.org/10.1007/s40999-017-0228-1.spa
dc.relation.referencesYaghoobzadeh S, Azizkandi AS, Salehzadeh H, Hasanaklou SH (2021) Effect of EPS beads on the behavior of sand–EPS and slope stability using triaxial and centrifuge tests. Int J Civ Eng 19:1269–1282. https://doi.org/10.1007/s40999-021-00617-9.spa
dc.relation.referencesSonnenberg R, Davies MC, Bransby MF, Hallett PD, Bengough AG, Mickovski SB, Hudacsek P (2007) Centrifuge modelling of slope reinforcement by vegetation. In: Proceedings of the 14th European conference on soil mechanics and geotechnical engineering, Madrid. 3. 1551–1556.spa
dc.relation.referencesSonnenberg R, Bransby MF, Hallett PD, Bengough AG, Mickovski SB, Davies MC (2010) Centrifuge modelling of soil slopes reinforced with vegetation. Can Geotech J 47:1415–1430. https:// doi.org/10.1139/T10-037.spa
dc.relation.referencesSonnenberg R, Bransby MF, Bengough AG, Hallett PD, Davies MCR (2012) Centrifuge modelling of soil slopes containing model plant roots. Can Geotech J 49:1–17. https://doi.org/10. 1139/t11-081.spa
dc.relation.referencesEab KH, Likitlersuang S, Takahashi A (2015) Laboratory and modelling investigation of root-reinforced system for slope stabilisation. Soils Found 55:1270–1281. https://doi.org/10.1016/j. sandf.2015.09.025.spa
dc.relation.referencesLiang T, Knappett JA (2015) Centrifuge modelling of vegetated slopes under earthquake loading. In: 6ICEGE-6th International Conference On Earthquake Geotechnical Engineering, Christchurch, New Zealand. Christchurch, New Zealand.spa
dc.relation.referencesLiang T, Knappett JA, Bengough AG, Ke YX (2017) Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides 14:1747–1765. https://doi.org/10. 1007/s10346-017-0802-2.spa
dc.relation.referencesChok YH, Kaggwa WS, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the 9th Australia New Zealand Conference on Geomechanics. Centre for Continuing Education, Uni Auckland, Auckland, New Zealand, pp 391–397.spa
dc.relation.referencesGentile F, Elia G, Elia R (2010) Analysis of the stability of slopes reinforced by roots. In: WIT Transactions on Ecology and the Environment. WIT Press, pp 189–200. https://doi.org/10.2495/ DN100171.spa
dc.relation.referencesStanier SA, Blaber J, Take WA, White DJ (2016) Improved image-based deformation measurement for geotechnical applications. Can Geotech J 53:727–739. https://doi.org/10.1139/cgj2015-0253.spa
dc.relation.referencesWhite DJ, Take WA (2002) GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing.spa
dc.relation.referencesCarvajal D (2021) Physical modeling of the effect of suction on slope stability in fine soil (In spanish). Dissertation, Escuela Colombiana de Ingenierı´a Julio Garavito.spa
dc.relation.referencesRocha Y (2021) Physical modeling in centrifuge of the effect of root type on slope stability (In spanish). Dissertation, Escuela Colombiana de Ingenierı´a Julio Garavito.spa
dc.relation.referencesNoorasyikin MN, Zainab M (2016) A Tensile strength of bermuda grass and vetiver grass in terms of root reinforcement ability toward soil slope stabilization. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/136/1/012029.spa
dc.relation.referencesAggarwal P, Choudhary KK, Singh AK, Chakraborty D (2006) Variation in soil strength and rooting characteristics of wheat in relation to soil management. Geoderma 136:353–363. https://doi. org/10.1016/j.geoderma.2006.04.004.spa
dc.relation.referencesDivya PV, Viswanadham BVS, Gourc JP (2017) Centrifuge model study on the performance of fiber reinforced clay-based landfill covers subjected to flexural distress. Appl Clay Sci 142:173–184. https://doi.org/10.1016/j.clay.2016.12.010.spa
dc.relation.referencesMoreno-Espı´ndola IP, Rivera-Becerril F, de Jesu´s Ferrara-Guerrero M, De Leo´n-Gonza´lez F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem 39(10):2520–2526. https://doi.org/10.1016/j.soilbio.2007.04.021.spa
dc.relation.referencesCohen D, Schwarz M, Or D (2011) An analytical fiber bundle model for pullout mechanics of root bundles. J Geophys Res 116(F3). https://doi.org/10.1029/2010JF001886.spa
dc.relation.referencesSchwarz M, Cohen D, Or D (2011) Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. J Geophys Res 116(F2). https://doi.org/10.1029/2010JF001753.spa
dc.relation.referencesSoric Z, Galic J, Rukavina T (2008) Determination of tensile strength of glass fiber straps. Mater Struct Constr 41:879–890. https://doi.org/10.1617/s11527-007-9291-4.spa
dc.relation.referencesWu Z, Leung AK, Boldrin D, Ganesan SP (2021) Variability in root biomechanics of Chrysopogon zizanioides for soil ecoengineering solutions. Sci Total Environ 776:145943. https://doi. org/10.1016/j.scitotenv.2021.145943.spa
dc.relation.referencesWu TH (1995) Slope stabilization. In: Morgan RPC, Rickson RJ (eds) Slope Stabilization and Erosion Control. E & FN Spon, London, pp 221–264.spa
dc.relation.referencesGray DH, Sotir RB (1996) Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. Wiley, USA.spa
dc.relation.referencesWu TH, McKinnell WP III, Swantson DN (1979) Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can Geotech J 16:19–33.spa
dc.relation.referencesDesai CS, Siriwardane HJ (1984) Constitutive laws for engineering materials with emphasis on geologic materials, 1st edn. Prentice-Hall, Englewood Cliffs, NJ.spa
dc.relation.referencesDyson AP, Tolooiyan A (2018) Optimisation of strength reduction finite element method codes for slope stability analysis. Innov Infrastruct Solut 3:38.spa
dc.relation.referencesGriffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Ge´otechnique 49(3):387–403.spa
dc.relation.referencesJohnson K, Lemcke P, Karunasena W, Sivakugan N (2006) Modelling the load–deformation response of deep foundations under oblique loading. Environ Model Softw 21:1375–1380. https://doi.org/10.1016/j.envsoft.2005.04.015.spa
dc.relation.referencesGasparre A (2005) Advanced laboratory characterisation of London clay. Ph.D. thesis, Imperial College, London.spa
dc.relation.referencesBishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–17.spa
dc.relation.referencesAziz S, Islam MS (2022) Mechanical effect of vetiver grass root for stabilization of natural and terraced hill slope. Geotech Geol Eng. https://doi.org/10.1007/s10706-022-02092-y.spa
dc.relation.referencesAugarde CE, Lee SJ, Loukidis D (2021) Numerical modelling of large deformation problems in geotechnical engineering: A stateof-the-art review. Soils Found 61(6):1718–1735.spa
dc.relation.referencesSoga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Ge´otechnique 66(3):248–273.spa
dc.relation.referencesChok YH, Jaksa MB, Kaggwa WS, Griffiths DV (2015) Assessing the influence of root reinforcement on slope stability by finite elements. Int J Geo-Eng 6(1):1–13. https://doi.org/10. 1186/s40703-015-0012-5.spa
dc.relation.referencesTsige D, Senadheera S, Talema A (2020) Stability analysis of plant-root-reinforced shallow slopes along mountainous road corridors based on numerical modeling. Geosciences 10(1):19. https://doi.org/10.3390/geosciences10010019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalRoots reinforcementeng
dc.subject.proposalClayey soileng
dc.subject.proposalSlope stabilityeng
dc.subject.proposalGeotechnical centrifugeeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/