Mostrar el registro sencillo del ítem

dc.contributor.authorMuñoz, A.
dc.contributor.authorTorres, N.
dc.contributor.authorGuzmán, A.
dc.date.accessioned2021-05-28T15:18:18Z
dc.date.accessioned2021-10-01T17:46:31Z
dc.date.available2021-05-28T15:18:18Z
dc.date.available2021-10-01T17:46:31Z
dc.date.issued2019
dc.identifier.issn0718-5073
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1511
dc.description.abstractIn this article, some of the physical, mechanical, and durability properties of mortars were evaluated. These mortars had partial replacements of the natural fine aggregate (NFA) with recycled fine aggregate (RFA) and carbonated recycled fine aggregate (CRFA) in amounts of 0%, 25%, and 50%. For this purpose, 3 groups of mortar mixtures were elaborated with a w/c ratio of 0.65. The results showed that an increase in the percentage of replacement of the CRFA, led to an improvement in the compressive strength of the mortar, as well as a lower superficial absorption rate.eng
dc.description.abstractEn este artículo, se evaluaron algunas de las propiedades físicas, mecánicas y de durabilidad de morteros preparados con reemplazos parciales de 0%, 25% y 50% del agregado fino natural (AFN) por agregado fino reciclado carbonatado (AFRC) y sin carbonatar (AFR). Para ello, se elaboraron 3 grupos de mezclas de mortero, con una relación a/c de 0,65. Los resultados obtenidos demostraron un aumento en la resistencia a la compresión del mortero y una menor tasa de absorción superficial, conforme se incrementó el porcentaje de reemplazo del AFRC.spa
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherPontificia Universidad Católica de Chile.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.sourcehttps://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-50732019000100025&lng=en&nrm=iso&tlng=enspa
dc.titleAssessment of a mortar with recycled aggregate from a concrete improved by carbonation: a look to a sustainable constructioneng
dc.title.alternativeEvaluación de un mortero preparado con agregados reciclados de un concreto mejorado por carbonatación: Una mirada a la construcción sustentablespa
dc.typeArtículo de revistaspa
dc.description.notes* Escuela Colombiana de Ingeniería Julio Garavito. Bogotá, Colombiaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupEstructuras y Materialesspa
dc.identifier.doi10.4067/S0718-50732019000100025
dc.identifier.urlhttp://dx.doi.org/10.4067/S0718-50732019000100025
dc.publisher.placeSantiago, Chile.spa
dc.relation.citationeditionRev. ing. constr. vol.34 no.1 Santiago Apr. 2019.spa
dc.relation.citationendpage32spa
dc.relation.citationissue1spa
dc.relation.citationstartpage25spa
dc.relation.citationvolume34spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalIngeniería de Construcciónspa
dc.relation.referencesASTM C128 - 05 (2005) Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. American Society for Testing and Materials, ASTM, West Conshohocken, PA, 2005.spa
dc.relation.referencesASTM C270-14a (2014) Standard Specification for Mortar for Unit Masonry. American Society for Testing and Materials, ASTM, West Conshohocken, PA, 2014.spa
dc.relation.referencesASTM C305-14 (2014), Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. American Society for Testing and Materials, ASTM, West Conshohocken, PA, 2014.spa
dc.relation.referencesASTM C39 / C39M-17b (2017) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials, ASTM, West Conshohocken, PA, 2017.spa
dc.relation.referencesASTM C642-13, (2013) Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. American Society for Testing and Materials, ASTM, West Conshohocken, PA, 2013.spa
dc.relation.referencesASTM C128-15 (2015) Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. American Society for Testing and Materials, ASTM, West Conshohocken, PA, 2015.spa
dc.relation.referencesASTM C136-14 (2014) Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM, West Conshohocken, PA, 2014.spa
dc.relation.referencesBertolini, L., Elsener, B., Pedeferri, P., & Polder, R. P. (2014). Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair (Second). WILEY-VCH.spa
dc.relation.referencesBojaca, N. R. (2013). Propiedades mecánicas y de durabilidad de concretos con agregado reciclado. Escuela Colombiana de Ingenieria Julio Garavito.spa
dc.relation.referencesBroomField, J. (2006). Corrosion of steel in concrete - Understanding, Investigation and Repair (Second). Taylor & Francis.spa
dc.relation.referencesChaparro, I. A. J. F. (2012). Hacia un desarrollo sostenible en la produccion de concreto a partir de desechos de construccion de mamposteria de arcilla.spa
dc.relation.referencesEvangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1), 9-14. https://doi.org/10.1016/j.cemconcomp.2009.09.005spa
dc.relation.referencesFernández-Jiménez, A., & Palomo, Á. (2009). Properties and uses of alkali cements. Revista Ingeniería de Construcción, 24(3), 213-232. https://doi.org/10.4067/S0718-50732009000300001spa
dc.relation.referencesGarboczi, E. J., & Bentz, D. P. (1999). Computational Simulation and Percolation Theory Applied To Concrete. Annual Reviews of Computational Physics VII.spa
dc.relation.referencesGeng, J., & Sun, J. (2013). Characteristics of the carbonation resistance of recycled fine aggregate concrete. Construction and Building Materials, 49, 814-820. https://doi.org/10.1016/j.conbuildmat.2013.08.090spa
dc.relation.referencesIzquierdo, S., Diaz, J., Mejía, R., & Torres, J. (2013). Cemento adicionado con un residuo del proceso de craqueo catalítico (FCC): Hidratación y microestructura. Revista Ingenieria de Construccion, 28(2), 141-154. http://dx.doi.org/10.4067/S0718-50732013000200003spa
dc.relation.referencesLedesma, E. F., Jiménez, J. R., Fernández, J. M., Galvín, A. P., Agrela, F., & Barbudo, A. (2014). Properties of masonry mortars manufactured with fine recycled concrete aggregates. Construction and Building Materials , 71, 289-298. https://doi.org/10.1016/j.conbuildmat.2014.08.080spa
dc.relation.referencesMehta, P. K., & Meryman, H. (2009). Tools for reducing carbon emissions due to cement consumption. STRUCTURE Magazine, (January), 11-15. Retrieved from https://www.structuremag.org/wp-content/uploads/2014/08/C-BB-SustainableConcrete_MehtaMeryman-Jan091.pdfspa
dc.relation.referencesMolano, M., Torres, N., & Molano, C. (2015). Evaluacion de los beneficios de la captura de CO2 para el tratamiento de agregados finos reciclados de concreto, como una estrategia para combatir el cambio climatico. Revista de La Escuela Colombiana de Ingenieria, (N° 99), 45-58.spa
dc.relation.referencesOikonomou, N. D. (2005). Recycled concrete aggregates. Cement and Concrete Composites , 27(2), 315-318. https://doi.org/10.1016/j.cemconcomp.2004.02.020spa
dc.relation.referencesRamezanianpour, A. A., Ghahari, S. A., & Esmaeili, M. (2014). Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete. Construction and Building Materials , 58, 138-146. https://doi.org/10.1016/j.conbuildmat.2014.01.102spa
dc.relation.referencesSanna, A., Dri, M., Hall, M. R., & Maroto-Valer, M. (2012). Waste materials for carbon capture and storage by mineralisation (CCSM) - A UK perspective. Applied Energy, 99, 545-554. https://doi.org/10.1016/j.apenergy.2012.06.049spa
dc.relation.referencesShi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2015). Performance enhancement of recycled concrete aggregate - a review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2015.08.057spa
dc.relation.referencesSim, J., & Park, C. (2011). Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate. Waste Management, 31(11), 2352-2360. https://doi.org/10.1016/j.wasman.2011.06.014spa
dc.relation.referencesZhang, J., Shi, C., Li, Y., Pan, X., Poon, C. S., & Xie, Z. (2015). Influence of carbonated recycled concrete aggregate on properties of cement mortar. Construction and Building Materials , 98, 1-7. https://doi.org/10.1016/j.conbuildmat.2015.08.087spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.armarcMateriales - Propiedades mecánicasspa
dc.subject.armarcMaterial - Mechanical propertieseng
dc.subject.armarcHormigónspa
dc.subject.armarcConcreteeng
dc.subject.armarcResistencia de materialesspa
dc.subject.armarcStrength of materialseng
dc.subject.proposalRecycled concreteeng
dc.subject.proposalCarbonationeng
dc.subject.proposalMortareng
dc.subject.proposalMechanical propertieseng
dc.subject.proposalDurabilityeng
dc.subject.proposalConcreto recicladospa
dc.subject.proposalCarbonataciónspa
dc.subject.proposalMorterospa
dc.subject.proposalPropiedades mecánicasspa
dc.subject.proposalDurabilidadspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc/4.0/