Mostrar el registro sencillo del ítem

dc.contributor.authorAgregado Echeverry, Julián Andrés
dc.date.accessioned2021-08-26T20:28:49Z
dc.date.accessioned2021-10-01T17:20:46Z
dc.date.available2021-08-26T20:28:49Z
dc.date.available2021-10-01T17:20:46Z
dc.date.issued2017-04-24
dc.identifier.isbn9789588927237
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1682
dc.description.abstractLos semigrupos cuánticos de Markov (SCM) son una extensión no conmutativa de los semigrupos de Markov definidos en probabilidad clásica. Ellos representan una evolución sin memoria de un sistema microscopico acorde a las leyes de la física cuántica y a la estructura de los sistemas cuánticos abiertos. Esto significa que la dinámica reducida del sistema principal es descrita por un espacio de Hilbert separable complejo 𝔥 por medio de un semigrupo 𝒯=(𝒯t)t≥0, el cual actúa sobre una subálgebra de von Neumann 𝔐 del álgebra 𝔓(𝔥) de todos los operadores lineales acotados definidos en 𝔥. Por simplicidad, algunas veces asumiremos que 𝔐=𝔓(𝔥). El semigrupo 𝓣 corresponde al cuadro de Heisenberg en el sentido que dado cualquier observable x, 𝓣t(x) describe su evolución en el tiempo t. De esta forma, dada una matriz de densidad p, su dinámica (cuadro de Schrödinger) es dada por el semigrupo predual 𝓣*t(ρ) , donde tr(ρ𝓣t(x))=tr(𝓣*t(ρ)x), tr(⋅) denota la operación traza. En este trabajo ofrecemos una exposición de varios resultados básicos sobre SCM. Además discutimos aplicaciones de SCM en teoría de la información cuántica y computación cuántica.spa
dc.description.abstractQuantum Markov semigroups (SCM) are a non-commutative extension of the Markov semigroups defined in classical probability. They represent an evolution without memory of a microscopic system according to the laws of quantum physics and the structure of open quantum systems. This means that the reduced dynamics of the main system is described by a complex separable Hilbert space 𝔥 by means of a semigroup 𝓣=(𝓣t)t≥0, acting on a von Neumann algebra 𝔓(𝔥) of the linear operators defined on 𝔥. For simplicity, we will sometimes assume that 𝔐=𝔓(𝔥). The semigroup 𝓣 corresponds to the Heisenberg picture in the sense that given any observable x, 𝓣t(x) describes its evolution at time t. Thus, given a density matrix p, its dynamics (Schrödinger's picure) is given by the predual semigroup 𝓣*t(ρ), where tr(ρ𝓣t(x))=tr(𝓣*t(ρ)x), tr(⋅) denote trace of a matrix. In this paper we offer an exposition of several basic results on SCM. We also discuss SCM applications in quantum information theory and quantum computing.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherEd. Universidad de Los Llanosspa
dc.relation.ispartofseriesVolumen;21
dc.sourcehttp://www.scielo.org.co/pdf/rori/v21s1/0121-3709-rori-21-s1-00020.pdfspa
dc.titleSemigrupos cuánticos de Markov: Pasado, presente y futurospa
dc.title.alternativeQuantum Markov semigroups (QMS): past, present and future panoramaeng
dc.typeCapítulo - Parte de Librospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupMatemáticasspa
dc.identifier.doihttps://doi.org/10.22579/20112629.427.
dc.identifier.url10.22579/20112629.427.
dc.publisher.placeColombiaspa
dc.relation.citationeditionAGREDO E., Julián A. Semigrupos cuánticos de Markov: Pasado, presente y futuro. Orinoquia [online]. 2017, vol.21, suppl.1, pp.20-29. ISSN 0121-3709. https://doi.org/10.22579/20112629.427.spa
dc.relation.citationendpage29spa
dc.relation.citationstartpage20spa
dc.relation.indexedN/Aspa
dc.relation.ispartofbookMemorias 2° Congreso Internacional de Ciencias Básicas e Ingenieríaspa
dc.relation.referencesAccardi L, Frigerio A, Lu YG. The weak coupling limit as a quantum functional central limit, Comm Math Phys. 1990;131(3):537- 570. https://doi.org/10.1007/BF02098275spa
dc.relation.referencesAccardi L, Lu YG. Volovich I. 2002. Quantum theory and its stochastic limit, Springer-Verlag, Berlin.spa
dc.relation.referencesAccardi L,. Lu YG, Volovich I. 2002. Quantum Theory and Its Stochastic Limit, Springer, New York. Phys.spa
dc.relation.referencesAgarwal GS. Open quantum Markovian systems and the microreversibility, Z. Physik 1973;258:409spa
dc.relation.referencesAgredo J, Fagnola F, Rebolledo R. Decoherence free subspaces of a quantum Markov Semigroup, J. Math. Phys. 2014;55:spa
dc.relation.referencesAlicki R. On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys. 1976;10:spa
dc.relation.referencesAlicki R. K: Lendi Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics. 1987;286: Springer-Verlag, Berlin.spa
dc.relation.referencesAttal S. 2006. Elements of Operators Algebras and Modular Theory, Open Quantum Systems I:spa
dc.relation.referencesThe Hamiltonian approach. Springer Verlag, Lectures Notes in Mathematics, Pp. 1-105.spa
dc.relation.referencesBratelli O, Robinson DW. Operator Algebras and Quantum Statistical Mechanics, 1987;1: second e.d., springer-Verlag,spa
dc.relation.referencesCipriani F. Dirichlet forms and markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 1997;147:259spa
dc.relation.referencesDavies EB. Markovian master equations, Comm. Math. Phys. 1974;39:spa
dc.relation.referencesDereziński J, De Roeck W. Extended weak coupling limit for PauliFierz operators, Comm. Math. Phys. 2008;279:spa
dc.relation.referencesDerezynski J, Fruboes R. Fermi golden rule and open quantum systems, Open Quantum Systems III - Recent Developments, Lecture Notes in Mathematics 1882, Springer Berlin, Heidelberg (2006), pp. 67116.spa
dc.relation.referencesFagnola F. Quantum Markov semigroups and quantum flows, Proyecciones. J. Math. 1999;18(3):spa
dc.relation.referencesFagnola F, Rebolledo R. Entropy production for quantum Markov semigroups, arXiv:1212.1366v1spa
dc.relation.referencesFagnola F, Rebolledo R. From classical to quantum entropy production, QP-–PQ:Quantum Probab. White Noise Anal. 2010;25:245spa
dc.relation.referencesFagnola F, Umanità V. Generators of KMS symmetric Markov semigroups on B(h). Symmetry and quantum detailed balance, Commun. Math. Phys. 2010;298:298spa
dc.relation.referencesFagnola F, Umanità V. Generators of detailed balance quantum Markov semigroups, Inf. Dim. Anal. Quantum Probab. Rel. Topics. 2007;10:335spa
dc.relation.referencesGoldstein S, Lindsay JM. Beurling-Deny condition for KMS symmetric dynamical semigroups, C. R. Acad. Sci. Paris. 1993;317:1053spa
dc.relation.referencesKossakowski A, Gorini V, Verri M. Quantum detailed balance and KMS condition, Comm. Math. Phys. 1977;57:97spa
dc.relation.referencesMajewski WA. The detailed balance condition in quantum statistical mechanics, J. Math. Phys. 1984;25:614spa
dc.relation.referencesMajewski WA, Streater RF. Detailed balance and quantum dynamical maps, J. Phys. A: Math. Gen. 1998;31:7981spa
dc.relation.referencesParthasarathy KR. An introduction to quantum stochastic calculus, Monographs in Mathematics Birkhäuser- Verlag, Basel. 1992;85:spa
dc.relation.referencesRebolledo R. 2006. Complete Positivity and the Markov structure of Open Quantum Systems, Open Quantum Systems II: The Markovian approach. Springer Verlag, Lectures Notes in Mathematics. Pp. 149-182.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcTeoria de la información
dc.subject.armarcComputación cuántica
dc.subject.proposalComputación cuánticaspa
dc.subject.proposalSemigrupos de Markov cuánticosspa
dc.subject.proposalQuantum computingeng
dc.subject.proposalQuantum Markov semigroupseng
dc.subject.proposalTeoria de la informaciónspa
dc.subject.proposalInformation theoryeng
dc.type.coarhttp://purl.org/coar/resource_type/c_3248spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookPartspa
dc.type.redcolhttps://purl.org/redcol/resource_type/LIBspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem