Mostrar el registro sencillo del ítem

dc.contributor.authorAbellán-García, Joaquín
dc.contributor.authorTorres Castellanos, Nancy
dc.contributor.authorFernández Gómez, Jaime
dc.date.accessioned2023-06-08T23:15:59Z
dc.date.available2023-06-08T23:15:59Z
dc.date.issued2020
dc.identifier.issn1964-8189spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2401
dc.description.abstractUltra-high-performance concrete (UHPC) results from the mixture of several constituents, leading to a highly complex material in both, fresh and hardened state. The higher number of constituents, together with a higher number of possible combinations, relative proportioning and characteristics, makes the behavior of this type of concrete more difficult to predict. The objective of the research is to build four analytical models, based on artificial neural networks (ANN), to predict the 1-day, 7-day, and 28-day compressive strengths and slump flow. Recycled glass powder milled to different particle size, fluid catalytic cracking residue (FCC) and different particle size limestone powder was used as partial replacements for Portland cement and silica fume. The ANN models predicted the 1-day, 7-day, and 28-day compressive strengths and slump flow of the test set with prediction error values (RMSE) of 2.400 MPa, 2.638 MPa, 2.064 MPa and 7.245 mm respectively. The results indicated that the developed ANN models are an efficient tool for predicting the slump flow and compressive strengths of UHPC while incorporating silica fume, limestone powder, recycled glass powder and FCC.eng
dc.description.abstractEl hormigón de ultra altas prestaciones (UHPC) es el resultado de la mezcla de varios constituyentes, lo que da lugar a un material muy complejo tanto en estado fresco como endurecido. El mayor número de constituyentes, junto con un mayor número de posibles combinaciones, proporciones relativas y características, hace que el comportamiento de este tipo de hormigón sea más difícil de predecir. El objetivo de la investigación es construir cuatro modelos analíticos, basados en redes neuronales artificiales (RNA), para predecir las resistencias a compresión a 1 día, 7 días y 28 días y el flujo de asentamiento. y 28 días. Como sustitutos parciales del cemento Portland y el humo de sílice se utilizaron polvo de vidrio reciclado molido a diferentes tamaños de partícula, residuo de craqueo catalítico fluido (FCC) y polvo de piedra caliza de diferentes tamaños de partícula. Los modelos RNA predijeron las resistencias a la compresión de 1, 7 y 28 días y el flujo de asentamiento del conjunto de pruebas con valores de error de predicción (RMSE) de 2,400 MPa, 2,638 MPa, 2,064 MPa y 7,245 mm respectivamente. Los resultados indicaron que los modelos RNA desarrollados son una herramienta eficaz para predecir el flujo de asentamiento y las resistencias a la compresión de los UHPC al incorporar humo de sílice, polvo de piedra caliza, polvo de vidrio reciclado y FCC.spa
dc.format.extent25 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTaylor and Francisspa
dc.sourcehttps://www.tandfonline.com/toc/tece20/currentspa
dc.titleProperties prediction of environmentally friendly ultra-highperformance concrete using artificial neural networkseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Estructuras y Materiales - Gimecispa
dc.identifier.doihttps://doi.org/10.1080/19648189.2020.1762749
dc.identifier.eissn2116-7214spa
dc.identifier.urlhttps://www.tandfonline.com/doi/abs/10.1080/19648189.2020.1762749
dc.relation.citationendpage2343spa
dc.relation.citationissue6spa
dc.relation.citationstartpage2319spa
dc.relation.citationvolume26spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalEuropean Journal of Environmental and Civil Engineeringeng
dc.relation.referencesAbbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271–295. https://doi.org/10.1007/s40069-016-0157-4spa
dc.relation.referencesAbdollahzadeh, A., Masoudnia, R, & Aghababaei, S. (2011). Predict strength of rubberized concrete using atrificial neural network. WSEAS Transactions on Computers, 10(2), 31–40.spa
dc.relation.referencesAbell an-Garc ıa, J., Nu nez-L ~ opez, A., Torres-Castellanos, N., & Fern andez-Gomez, J. ( 2019). Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass [Efecto Del FC3R En Las Propiedades Del Concreto de Ultra Altas Prestaciones Con Vidrio Reciclado]. Dyna, 86(211), 84–92. http://doi.org/10.15446/dyna.v86n211.79596spa
dc.relation.referencesAbell an, J., Fern andez, J., Torres, N., & Nu nez, A. ( ~ 2020). Statistical optimization of ultra-high-performance glass concrete. ACI Materials Journal, 117(1), 243–254. https://doi.org/10.14359/51720292spa
dc.relation.referencesAbellan, J., Torres, N., Nu nez, A., & Fern ~ andez, J. (2018a). Influencia Del Exponente de Fuller, La Relacion Agua Conglomerante y El Contenido En Policarboxilato En Concretos de Muy Altas Prestaciones [Paper presentation]. IV Congreso Internacional de Ingenieria Civil, Havana, Cuba.spa
dc.relation.referencesAbellan, J., Torres, N., Nu nez, A., & Fern ~ andez, J. (2018b). Ultra high performance fiber reinforced concrete: State of the art, applications and possibilities into the Latin American market [Paper presentation]. XXXVIII Jornadas Sudamericanas de Ingenier ıa Estructural, Lima, Peru.spa
dc.relation.referencesAdeli, H. (2001). Neural networks in civil engineering: 1989 2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. https://doi.org/10.1111/0885-9507.00219spa
dc.relation.referencesAderaw, M., Muse, S., & Abiero, Z. C. (2018). Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Construction and Building Materials, 190, 517–525.spa
dc.relation.referencesAnderson, J. A. (1983). Cognitive and psychological computation with neural models. IEEE Transactions on Systems, Man, and Cybernetics, 13(5), 799–816. https://doi.org/10.1109/TSMC.1983.6313074spa
dc.relation.referencesArizzi, A., & Cultrone, G. (2018). Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue: A petrographic and physical-mechanical study. Construction and Building Materials, 184, 382–390. https://doi.org/10.1016/j.conbuildmat.2018.07.002spa
dc.relation.referencesASTM. 2010. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-Mm] cube specimens). American Society for Testing and Materials C-109/109M (C109/C109M – 11b): 1–9.spa
dc.relation.referencesASTM and ASTM C1437. 2016. Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials C-1437 (C1437), 1–2.spa
dc.relation.referencesBal, L., & Buyle-Bodin, F. (2013). Artificial neural network for predicting drying shrinkage of concrete. Construction and Building Materials, 38, 248–254. https://doi.org/10.1016/j.conbuildmat.2012.08.043spa
dc.relation.referencesBharathi, S. D., Manju, R., & Premalatha, J. (2017). Prediction of compressive strength for self-compacting concrete (SCC) using artificial intelligence and regression analysis. International Journal of ChemTech Research, 10(8), 263–275.spa
dc.relation.referencesCamacho, E., Lopez, J. A., & Serna, P. ( 2012). Definition of three levels of performance for UHPFRCVHPFRC with available materials, in Proceedings of Hipermat 2012. In M. Schmidt, E. Fehling, C. Glotzbach, S. Frohlich, & S. Piotrowski (Eds.), € 3rd International Symposium on UHPC and Nanotechnology for Construction Materials (pp. 249–256). Kassel University Press.spa
dc.relation.referencesCamacho Torregrosa, E. (2013). Dosage optimization and bolted connections for UHPFRC ties. Polytechnic University of Valencia.spa
dc.relation.referencesChandwani, V., Agrawal, V., & Nagar, R. (2014). Applications of artificial neural networks in modeling compressive strength of concrete: A state of the art review. Advances in Artificial Neural Systems, 2014(4), 1–56. https://doi.org/10.1155/2014/629137spa
dc.relation.referencesChandwani, V., Agrawal, V., & Nagar, R. (2015). Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Systems with Applications, 42(2), 885–893. https://doi.org/10.1016/j.eswa.2014.08.048spa
dc.relation.referencesChollet, F., & Allaire, J. J. (2018). Deep learning with R. Manning Publications Co.spa
dc.relation.referencesDemir, F. (2008). Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Construction and Building Materials, 22, 1428–1435.spa
dc.relation.referencesDuan, Z. H., Kou, S. C., & Poon, C. S. (2013). Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction and Building Materials, 40, 1200–1206. https://doi. org/10.1016/j.conbuildmat.2012.04.063spa
dc.relation.referencesEstebon, M. D. (1997). Perceptrons: An associative learning network by. Virginia Tech (June 1960).spa
dc.relation.referencesFranceschini, S., Gandola, E., Martinoli, M., Tancioni, L., & Scardi, M. (2018). Cascaded neural networks improving fish species prediction accuracy: The role of the biotic information. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-22761-4spa
dc.relation.referencesFunk, J. E., & Dinger, D. R. (1994). Predictive process control of crowded particulate suspensions. Applied to ceramic manufacturing. Springer Science.spa
dc.relation.referencesGhafari, E., & Al. (2012). Optimization of UHPC by adding nanomaterials, in Proceedings of Hipermat 2012 [Paper presentation]. 3rd International Symposium on UHPC and Nanotechnology for Construction Materials (pp. 71–78), Kassel, Alemania.spa
dc.relation.referencesGhafari, E., Bandarabadi, M., Costa, H., & Julio, E. ( 2015). Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model. Journal of Materials in Civil Engineering, 27(11), 04015017. https://doi.org/10.1061/(ASCE)MT.1943-5533. 0001270spa
dc.relation.referencesGhafari, E., Costa, H., Nuno, E., & Santos, B. (2014). RSM-based model to predict the performance of selfcompacting UHPC reinforced with hybrid steel micro-fibers. Construction and Building Materials, 66, 375–383. https://doi.org/10.1016/j.conbuildmat.2014.05.064spa
dc.relation.referencesGhafari, E., Costa, H., Nuno, E., Santos, B., Costa, H., & Julio, E. ( 2015). Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials. Construction and Building Materials Journal, 101, 201–208. https://doi.org/10.1016/j.conbuildmat.2015.10.066spa
dc.relation.referencesGupta, S. (2013). Using artificial neural network to predict the compressive strength of concrete containing nano-silica. Civil Engineering and Architecture, 1(3), 96–102.spa
dc.relation.referencesHuang, Z., & Cao, F. (2012). Effects of nano-materials on the performance of UHPC. 材料导报B:研究篇, 26(9), 136–141.spa
dc.relation.referencesJamalaldin, S., Hakim, S., Noorzaei, J., Jaafar, M. S., & Jameel, M. (2011). Application of artificial neural networks to predict compressive strength of high strength concrete. International Journal of the Physical Sciences, 6(5), 975–981.spa
dc.relation.referencesKalra, G., & Joseph, E. (2016). Research review and modeling of concrete compressive strength using artificial neural networks. Construction and Building Materials, 3(2), 672–677.spa
dc.relation.referencesKhan, S. U., & Ayub, T. (2013, January). Prediction of compressive strength of plain concrete confined with ferrocement using artificial neural network (ANN) and comparison with existing mathematical models, American Journal of Civil Engineering and Architecture, 1(1),7–14.spa
dc.relation.referencesKhashman, A., & Akpinar, P. (2017). Science direct non-destructive prediction of concrete compressive strength using neural networks prediction of concrete compressive strength using neural networks. Procedia Computer Science, 108, 2358–2362. https://doi.org/10.1016/j.procs.2017.05.039spa
dc.relation.referencesKubens, S. (2010). Interaction of cement and admixtures and its influence on rheological properties. (Vol. 49). Edited by V. Culliver, & A. Inhaberin. Internationaler wissenschaftlicher Fachverlag.spa
dc.relation.referencesDe Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. In Modern concrete technology series. London: E&FN SPON.spa
dc.relation.referencesLi, W., Huang, Z., Zu, T., Shi, C., Duan, W. H., & Shah, S. P. (2016). Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete. Journal of Materials in Civil Engineering, 28(1), 04015068–04015069. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0001327spa
dc.relation.referencesMeng, W., Samaranayake, V. A., & Khayat, K. H. (2018). Factorial design and optimization of UHPC with lightweight sand. ACI Materials Journal, 345(435M), 327–335.spa
dc.relation.referencesMoriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. https://doi.org/10.13031/2013.23153spa
dc.relation.referencesMushgil, H. M., Alani, H. A., & George, L. E. (2015). Comparison between resilient and standard back propagation algorithms efficiency in pattern recognition. International Journal of Scientific & Engineering Research, 6(3), 773–778.spa
dc.relation.referencesNaderpour, H., Kheyroddin, A., & Ghodrati Amiri, G. (2010). Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 92(12), 2817–2829. https:// doi.org/10.1016/j.compstruct.2010.04.008spa
dc.relation.referencesNaoum, R. S., & Al-Sultani, Z. N. (2013). Hybrid system of learning vector quantization and enhanced resilient backpropagation artificial neural. International Journal of Recent Research and Applied Studies, 14, 333–339.spa
dc.relation.referencesOlden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178(3-4), 389–397. https://doi.org/10.1016/j.ecolmodel.2004.03.013spa
dc.relation.referencesParichatprecha, R., & Nimityongskul, P. (2009). Analysis of durability of high performance concrete using artificial neural networks. Construction and Building Materials, 23(2), 910–917. https://doi.org/10.1016/j. conbuildmat.2008.04.015spa
dc.relation.referencesPedrajas, C., Rahhal, V., & Talero, R. (2014). Determination of characteristic rheological parameters in portland cement pastes. Construction and Building Materials, 51, 484–491. https://doi.org/10.1016/j.conbuildmat.2013.10.004spa
dc.relation.referencesPrasad, N., Singh, R., & Lal, S. P. (2013). Comparison of back propagation and resilient propagation algorithm for spam classification. Proceedings of International Conference on Computational Intelligence, Modelling and Simulation, 29–34.spa
dc.relation.referencesPuertas, F., Santos, H., Palacios, M., & Mart ınez-Ram ırez, S. (2005). Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes. Advances in Cement Research, 17(2), 77–89. https://doi.org/10.1680/adcr.2005.17.2.77spa
dc.relation.referencesR Core Team. (2018). R: A language and environment for statistical computing. R Core Team. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519spa
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & R. J. & Williams. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructures of cognition (pp. 318–362), MIT Press.spa
dc.relation.referencesSahoo, K., Sarkar, P., & Robin Davis, P. (2016). Artificial neural networks for prediction of compressive strength of recycled aggregate concrete. Int’l Journal of Research in Chemical, Metallurgical and Civil Engg, 3(1), 81–85. http://dx.doi.org/10.15242/IJRCMCE.IAE0316414spa
dc.relation.referencesSchmidt, C., & Schmidt, M. (2012). Whitetopping of asphalt and concrete pavements with thin layers of ultra-high-performance concrete - construction and economic efficiency [Paper presentation]. Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany.spa
dc.relation.referencesSoliman, N. A., & Tagnit-Hamou, A. (2017a). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. https://doi.org/10.1016/ j.conbuildmat.2017.02.084spa
dc.relation.referencesSoliman, N. A., & Tagnit-Hamou, A. (2017b). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243–252. https://doi.org/10.1016/j.conbuildmat.2017.03.187spa
dc.relation.referencesSrinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall – runoff models. Applied Soft Computing, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02. 002spa
dc.relation.referencesTaghaddos, H., Mahmoudzadeh, F., Pourmoghaddam, A., & Shekarchizadeh, M. (2004). Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system [Paper presentation]. Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Alemania.spa
dc.relation.referencesTagnit-Hamou, A., Soliman, N., & Omran, A. (2016a). Green ultra - high - performance glass concrete [Paper presentation]. First International Interactive Symposium on UHPC – 2016. Des Moines, Iowa, USA. https://doi.org/10.21838/uhpc.2016.35spa
dc.relation.referencesTagnit-Hamou, A., Soliman, N., & Omran, A. (2016b). Green ultra - high - performance glass concrete. First International Interactive Symposium on UHPC – 2016, 3(1), 1–10.spa
dc.relation.referencesTorre, A., Garcia, F., Moromi, I., Espinoza, P., & Acuna, L. ( ~ 2015). Prediction of compression strength of high performance concrete using artificial neural networks [Paper presentation]. VII International Congress of Engineering Physics, Mexico City, Mexico (Vol. 012010). https://doi.org/10.1088/1742-6596/582/1/ 012010spa
dc.relation.referencesTorres Castellanos, N. (2014). Estudio en estado fresco y endurecido de concretos adicionados con catalizador de craqueo catal Itico usado (fcc) nancy. Universidad Nacional de Colombia.spa
dc.relation.referencesTorres Castellanos, N., & Torres Agredo, J. (2010). Uso Del Catalizador Gastado de Craqueo Catal ıtico (FCC) Como Adicion Puzol anica [Revision using spent fluid catalytic cracking (FCC) catalyst as pozzolanic add- ition — A review]. Ingenieria & Investigacion Journal, 30(2), 35–42.spa
dc.relation.referencesUysal, M., & Tanyildizi, H. (2012). Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Construction and Building Materials, 27(1), 404–414. https://doi.org/10.1016/j.conbuildmat.2011. 07.028spa
dc.relation.referencesYu, R., Spiesz, P., & Brouwers, H. J. H. (2014). Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cement and Concrete Research, 56, 29–39. https://doi.org/10. 1016/j.cemconres.2013.11.002spa
dc.relation.referencesZhang, J., & Zhao, Y. (2017). Experimental investigation and prediction of compressive strength of ultrahigh performance concrete (UHPC) containing supplementary cementitious materials. Hindawi Advances in Materials Science and Engineering, 2017, 522–525.spa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.subject.proposalUHPCeng
dc.subject.proposalANNeng
dc.subject.proposalCompressive strengtheng
dc.subject.proposalSlump floweng
dc.subject.proposalSCMeng
dc.subject.proposalVirtual packing densityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem