Show simple item record

dc.contributor.authorGuzmán Aponte, Alvaro
dc.contributor.authorTorres Castellanos, Nancy
dc.date.accessioned2023-07-29T14:54:59Z
dc.date.available2023-07-29T14:54:59Z
dc.date.issued2017
dc.identifier.issn0121-5132spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2528
dc.description.abstractEn este artículo se presentan los resultados de la caracterización física de agregado reciclado fino (ARF) comercial y el efecto del uso del proceso de carbonatación para mejorar sus propiedades físicas. Antes y después del proceso de carbonatación, se determinaron las propiedades físicas de los agregados reciclados finos comerciales, incluyendo la absorción de agua y la densidad. Se evidenció que la carbonatación no causa un cambio marcado en la densidad del ARF, pero sí ocasiona una reducción significativa de la absorción de los ARF (7,3 y 3,1 % en ARF y ARFC-20, respectivamente). Además, en las condiciones de carbonatación utilizadas en esta investigación (concentraciones de CO2 del 10 %, humedad relativa del 65 % y temperatura de 25 °C), tiempos de exposición a carbonatación mayores de quince días (ARFC-15) no evidencian un cambio marcado en las propiedades físicas de absorción y densidad de los ARF.spa
dc.description.abstractIn this paper, the results of the physical characterization of commercial fine recycled aggregates (FRA) and the use of a carbonation process to enhance their properties are presented. Before and after the laboratory carbonation process, the physical properties of the FRA, including water absorption and density were estimated. Carbonation showed no significant changes in density values, but resulted in reduction in water absorption values (7.3% and 3.1% in ARF and ARFC-20, respectively). Moreover, under the carbonation conditions (10% CO2, 65% HR and 25 °C) exposure times greater than 15 days (ARFC-15) did not show a marked change in the physical properties (absorption and density) of the RFA.eng
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Escuela Colombiana de Ingeniería Julio Garavitospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/spa
dc.titleEfecto de la carbonatación sobre las propiedades físicas de un agregado reciclado fino comercialspa
dc.title.alternativeEffect of carbonation on the physical properties of a comercial fine recycled aggregateseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGrupo de Investigación Estructuras y Materiales - Gimecispa
dc.identifier.urlhttps://www.escuelaing.edu.co/es/investigacion-e-innovacion/editorial/
dc.publisher.placeBogotáspa
dc.relation.citationendpage54spa
dc.relation.citationissue107spa
dc.relation.citationstartpage47spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalRevista de la Escuela Colombiana de Ingenieríaeng
dc.relation.referencesAiraksinen, M. & Matilainen, P. (2011). A carbon footprint of an office building. Energies, 4, 1197-1210.spa
dc.relation.referencesBin-Shafique, S., Walton, J., Gutiérrez, N., Smith, R. & Tarquin, A. (1998). Influence of carbonation on leaching of cementitious waste forms. J. Environ. Eng, 22, 463-467.spa
dc.relation.referencesBleischwitz, R. & Bahn-Walkowiak, B. (2011). Aggregates and construction markets in Europe: towards a sectorial action plan on sustainable resource management. Miner Eng, 22, 159-176.spa
dc.relation.referencesBobicki, E., Liu, Q., Xu, Z. & Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320.spa
dc.relation.referencesCollins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.spa
dc.relation.referencesDosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. Journal of Advanced Concrete Technology, 5(1), 27-42.spa
dc.relation.referencesEngelsen, C., Mehus, J. & Pade, C. (2005). Carbon Dioxide Uptake in Demolished and Crushed Concrete. Disponible en <http:// nordicinnovation.org/Global/_Publications/Reports/2005/03018_ carbon_dioxide_uptake_in_demolished_and_crushed_concrete. pdf>>, Consultado el 10 de marzo de 2017. In Tech. Rep., Oslo: Norwegian Building Research Institute.spa
dc.relation.referencesEuropean Aggregates Association Annual Review (2012). Brussels, Belgium.spa
dc.relation.referencesFernández, M., Simons S., Hills, C. & Carey, P. (2004). A review of accelerated carbonation technology in the treatment of cementbased materials and sequestration of CO2. Journal of Hazardous Materials, 112(3), 193-205.spa
dc.relation.referencesGeng, J. & Sun, J. (2013). Characteristics of the carbonation resistance of recycled fine aggregate concrete. Construction and Building Materials, 49, 814-820.spa
dc.relation.referencesGuggemos, A. & Horvath A. (2005). Comparison of environmental effects of steel and concrete-framed buildings. Journal of Infrastructure Systems, 11(8), 93-101.spa
dc.relation.referencesGunning, J. (2011). Accelerated carbonation of hazardous wastes. Disponible en <http://gala.gre.ac.uk/7135/1/Peter_John_ Gunning_Accelerated_carbonation_2011.pdf>. Consultado el 20 de marzo de 2017. In School of Science, University of Greenwich, p. 236.spa
dc.relation.referencesHendriks, C., Worrell, E., De Jager, D., Blok, K. & Riemer, P. (1998). Emission reduction of greenhouse gases from the cement industry. in Fourth International Conference on Greenhouse Gas Control Technologies. Disponible en <http://www.wbcsdcement. org/pdf/tf1/prghgt42.pdf>. Consultado el 5 de marzo de 2017. Austria: IEA GHG R&D Program.spa
dc.relation.referencesHuijgen, G.R., Comans, R. & Witkamp, G. (2006). Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation. Industry Engineering Chemistry, 45, 184-194.spa
dc.relation.referencesHumphreys, K. & Mahasenan, M. (2002). Toward a sustainable cement industry. Substudy 8, climate change. Disponible en <http://www.cement.ca/images/stories/wbcsd-batelle_2002_climate_change_-_substudy_8.pdf>, Consultado el 5 de marzo de 2017. World Business Council for Sustainable Development.spa
dc.relation.referencesJohannesson, B. & Utgenannt, P. (2001). Microstructural changes caused by carbonation of cement mortar. Cement and Concrete Research, 31, 925-931.spa
dc.relation.referencesJonsson, G. & Wallevik, O. (2005). Information on the use of concrete in Denmark, Sweden, Norway and Iceland. Disponible en <http://www.nordicinnovation.org/Global/_Publications/Reports/2005/03018_background_report_information_on_ the_use_of_concrete_in_nordic_countries.pdf>, Consultado el 5 de marzo de 2017. In Tech. Rep. Reykjavik: Icelandic Building Research Institute.spa
dc.relation.referencesKhatib, J. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete, 35, 763-769. Kosmatka, S., Kherkhoff, B. & Panarese, W. (2002). Design and control of concrete mixtures. Chapter 5.spa
dc.relation.referencesKou, S. & Poon, C. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76.spa
dc.relation.referencesKou, S., Zhan, B. & Poon, C. (2012). Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. Construction Building Materials, 28, 549–56.spa
dc.relation.referencesKou, S., Zhan, B. & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement and Concrete Composites, 45, 22-28.spa
dc.relation.referencesLagerblad, B. (2005). Carbon Dioxide Uptake During Concrete Life Cycle: State of the Art. Disponible en <https://www.dti.dk/_/ media/21043_769417_Task%201_final%20report_CBI_Bjorn%20 Lagerblad.pdf>. Consultado el 8 de marzo de 2017. Swedish Cement and Concrete Research Institute.spa
dc.relation.referencesLange, L.C. (1997). Carbonation of Cement Solidified Hazardous Wastes. Queen Mary and Westfield College.spa
dc.relation.referencesLi, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong. Hong Kong: Department of Building and Real Estate. The Hong Kong Polytechnic University.spa
dc.relation.referencesLiu, Q., Xiao, J. & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement & Concrete, 241, 1050-1057.spa
dc.relation.referencesMacias, A., Kindness, A. & Glasser, F.P. (1997). Impact of carbon dioxide on the immobilisation potential of cemented wastes: chromium. Cement & Concrete Research, 27(2), 215-225.spa
dc.relation.referencesMcNeil, K. & Kang, T. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61-71.spa
dc.relation.referencesMéndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. In II Conferencia Internacional “Gestión de Residuos en América Latina (GRAL)”.spa
dc.relation.referencesPan, S., Chang, E., & Chiang, P. (2012). CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research, 12(5), 770-791.spa
dc.relation.referencesPinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. Bogotá: Universidad Militar Nueva Granada.spa
dc.relation.referencesPoon, C. & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources Conservation and Recycling, 50(3), 293-305.spa
dc.relation.referencesRavindrarajah, R.S. & Tam, T.C. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37(130), 29-38.spa
dc.relation.referencesRehan, R. & Nehdi, M. (2005). Carbon dioxide emissions and climate change: policy implications for the cement industry. Environmental Science & Policy, 8(2), 105-114.spa
dc.relation.referencesRichardson, G., Groves, G., Brought, A. & Dobson, C. (1993). The carbonation of OPC and OPC/silica fume hardened cement pastes in air under conditions of fixed humidity. Advances in Cement Research, 5(18), 81-86.spa
dc.relation.referencesRoussat, N., Dujet, C. & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste Management, 29(1), 12-20.spa
dc.relation.referencesSanna, A., Dri, M., Hall, M. & Maroto-Valer, M. (2012). Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective. Applied Energy, 99, 545-554.spa
dc.relation.referencesSlegers, P. & Rouxhet, P. (1976). Carbonation of the hydration products of tricalcium silicate. Cement and Concrete Research, 6(3), 381-388.spa
dc.relation.referencesUrge, D. (2007). Climate change mitigation in the building sector: the findings of the 4th Assessment report of the IPCC. Disponible en <https://www.ipcc.ch/pdf/presentations/poznanCOP-14/diane-urge-vorsatz.pdf>. Consultado el 1 de marzo de 2017. Center for climate change and sustainable energy policy.spa
dc.relation.referencesValls, S. & Vázquez, E. (2001). Accelerated carbonation of sewage sludge–cement–sand mortars and its environmental impact. Cement & Concrete Research, 31(9), 1271-1276.spa
dc.relation.referencesVenhuis, M.A. & Reardon, E.J. (2001). Vacuum method for carbonation of cementitious waste forms. Environ. Sci. Technol, 35(20), 4120-4125.spa
dc.relation.referencesWalton, J., Bin-Shafique, S., Smith, R., Gutiérrez, N. & Tarquin, A. (1997). Role of carbonation in transient leaching of cementitious waste forms. Environ. Sci. Technol, 31(8), 2345-2349.spa
dc.relation.referencesYamasaki, A. (2003). An Overview of CO2 Mitigation Options for Global Warming-Emphasizing CO2 Sequestration Options. Journal of Chemical engineering of Japan, 36 (4), 361-375.spa
dc.relation.referencesYousuf, M., Mollah, A., Hess, R., Tsai, Y. & Cocke, D. (1993). An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc. Cement and Concrete Research, 23(4), 773-784.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalAgregado reciclado fino comercialspa
dc.subject.proposalCarbonataciónspa
dc.subject.proposalAbsorción de aguaspa
dc.subject.proposalConcretospa
dc.subject.proposalCommercial fine recycled aggregateseng
dc.subject.proposalCarbonationeng
dc.subject.proposalWater absorptioneng
dc.subject.proposalConcreteeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/